Vou ver se consigo.
Queremos encontrar

e

tal que

para todos os valores de

na tabela.
Ou seja, queremos resolver o seguinte sistema:

Seja

,

e

.
Então podemos representar o sistema por

(não confundir este

com o

do enunciado).
Este não é um sistema linear compatível, mas sabemos que a reta que melhor ajusta os dados no sentido dos mínimos quadrados é:

Então

e

, ou seja, a solução pelo método dos mínimos quadrados é

.
É claro que usando estes valores para

, não encontrarás exatamente os valores para

, mas sim os valores que minimizam a soma dos quadrados da diferença entre o valor de

da tabela e o valor de

obtido utilizando este valor de

.
Seja

o subespaço formado pelos vetores-coluna de

.
Queremos encontrar a projeção ortogonal de

sobre

.
Pelo teorema que já postei acima:
... se

é o espaço-coluna de

, então a projeção ortogonal de

em

é:

Então:

Acredito que seja isso.
Abraço!