• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sub-Espaço Vetorial] Exercício ...

[Sub-Espaço Vetorial] Exercício ...

Mensagempor e8group » Qui Jun 13, 2013 16:02

Gostaria de opiniões .Preciso concluir um exercício ,para isto preciso mostrar que para quaisquer função h em F(\mathbb{R};\mathbb{R}) ela pode ser reescrita como (f + g)(x) , \forall f \in F , \forall g \in G sse X\cap Y =\varnothing ,onde F= \{f:\mathbb{R}\mapsto \mathbb{R}  ; f(x) = 0 \forall x \in X \subset\mathbb{R}\} e G= \{g:\mathbb{R}\mapsto \mathbb{R}  ; g(x) = 0 \forall x \in Y \subset\mathbb{R}\} .

Primeiro ,supus (por absurdo) que X\cap Y \neq \varnothing e mostrei que esta suposição é falsa para que hipótese F(\mathbb{R};\mathbb{R}) = F+G seja verdadeira . Agora preciso mostrar se X\cap Y = \varnothing tem-se F(\mathbb{R};\mathbb{R}) = F + G .


Posso definir w(x) =  ([\phi +g] +[\gamma +f])(x) e com isso obter que (f+g)(x) =(w-\phi -\gamma)(x) com f,g,\phi ,\gamma \in F(\mathbb{R};\mathbb{R}) em particular f \in F , g \in G que são subespaços vetoriais de F(\mathbb{R};\mathbb{R})(isto foi provado no item (a) do mesmo exercício e também já foi demonstrado em outro exercício do mesmo livro que [tex]F(\mathbb{R};\mathbb{R}) é espaço vetorial) ??

Obrigado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Sub-Espaço Vetorial] Exercício ...

Mensagempor e8group » Dom Dez 15, 2013 16:06

Só passando pra dá um up neste tópico para ver se alguém tem alguma opinião .Este é um dos problemas que ainda não conseguir concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.