• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão Proporcional-Grandeza proporcional e inversamente

Divisão Proporcional-Grandeza proporcional e inversamente

Mensagempor AlexandreLuna » Ter Abr 24, 2012 22:10

2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.
AlexandreLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 24, 2012 20:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor danjr5 » Dom Abr 29, 2012 16:06

AlexandreLuna escreveu:2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.

Saiba que:
=> se um número é diretamente proporcional a outro, então multiplique; ex: 4 é diretamente proporcional a x, então: 4x
=> se um número é inversamente proporcional a outro, então divida; ex: 4 é inversamente proporcional a x, então: \frac{x}{4}

Imagine que a importância a ser distribuída é k, então:
\frac{2k}{42} + \frac{3k}{50} + \frac{5k}{48} + \frac{6k}{45} = k

Foi dito que a 1ª recebeu R$ 156,00,
daí,
\frac{2k}{42} = 156

\frac{k}{21} = 156

k = 3276

Alexandre,
agora substitua k em cada uma das frações acima e obterá o respectivo valor de cada uma.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
danjr5
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1432
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor jrmatematico » Dom Mai 13, 2012 10:02

Veja essa video aula de proporcionalidade: http://www.youtube.com/watch?v=qtMJR7ncE04
jrmatematico
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 13, 2012 09:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?