• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão Proporcional-Grandeza proporcional e inversamente

Divisão Proporcional-Grandeza proporcional e inversamente

Mensagempor AlexandreLuna » Ter Abr 24, 2012 22:10

2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.
AlexandreLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 24, 2012 20:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor DanielFerreira » Dom Abr 29, 2012 16:06

AlexandreLuna escreveu:2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.

Saiba que:
=> se um número é diretamente proporcional a outro, então multiplique; ex: 4 é diretamente proporcional a x, então: 4x
=> se um número é inversamente proporcional a outro, então divida; ex: 4 é inversamente proporcional a x, então: \frac{x}{4}

Imagine que a importância a ser distribuída é k, então:
\frac{2k}{42} + \frac{3k}{50} + \frac{5k}{48} + \frac{6k}{45} = k

Foi dito que a 1ª recebeu R$ 156,00,
daí,
\frac{2k}{42} = 156

\frac{k}{21} = 156

k = 3276

Alexandre,
agora substitua k em cada uma das frações acima e obterá o respectivo valor de cada uma.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1601
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor jrmatematico » Dom Mai 13, 2012 10:02

Veja essa video aula de proporcionalidade: http://www.youtube.com/watch?v=qtMJR7ncE04
jrmatematico
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 13, 2012 09:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.