• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão Proporcional-Grandeza proporcional e inversamente

Divisão Proporcional-Grandeza proporcional e inversamente

Mensagempor AlexandreLuna » Ter Abr 24, 2012 22:10

2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.
AlexandreLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 24, 2012 20:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor danjr5 » Dom Abr 29, 2012 16:06

AlexandreLuna escreveu:2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80

Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.

Saiba que:
=> se um número é diretamente proporcional a outro, então multiplique; ex: 4 é diretamente proporcional a x, então: 4x
=> se um número é inversamente proporcional a outro, então divida; ex: 4 é inversamente proporcional a x, então: \frac{x}{4}

Imagine que a importância a ser distribuída é k, então:
\frac{2k}{42} + \frac{3k}{50} + \frac{5k}{48} + \frac{6k}{45} = k

Foi dito que a 1ª recebeu R$ 156,00,
daí,
\frac{2k}{42} = 156

\frac{k}{21} = 156

k = 3276

Alexandre,
agora substitua k em cada uma das frações acima e obterá o respectivo valor de cada uma.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
danjr5
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1403
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Divisão Proporcional-Grandeza proporcional e inversament

Mensagempor jrmatematico » Dom Mai 13, 2012 10:02

Veja essa video aula de proporcionalidade: http://www.youtube.com/watch?v=qtMJR7ncE04
jrmatematico
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 13, 2012 09:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}