por AlexandreLuna » Ter Abr 24, 2012 22:10
2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80
Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.
-
AlexandreLuna
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 24, 2012 20:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Dom Abr 29, 2012 16:06
AlexandreLuna escreveu:2.Certa importância foi distribuída entre quatro pessoas em partes diretamente proporcionais ao número de filhos e inversamente proporcionais ás suas idades. A primeira tem 2 filhos e 42 anos; a segunda , 3 filhos e 50 anos; a terceira 5 filhos e 48 anos e a quarta, 6 filhos e 45 anos. Sabendo-se que a primeira recebeu R$156,00, calcular a importância total e as partes das outras três. Respostas: 1130,61; 196,56; 341,25; 436,80
Este é o tipo de exercício que eu nem sei por onde começar, pois na minha apostila só tem exemplos de exercícios separados em que ou é só proporcional ou é só inversamente proporcional. E não sei qual se faz primeiro se é a idade ou os filhos, e o valor citado da primeira me deixou mais confuso ainda.
Saiba que:
=> se um número é diretamente proporcional a outro, então multiplique; ex: 4 é diretamente proporcional a x, então: 4x
=> se um número é inversamente proporcional a outro, então divida; ex: 4 é inversamente proporcional a x, então:

Imagine que a importância a ser distribuída é k, então:

Foi dito que a 1ª recebeu R$ 156,00,
daí,



Alexandre,
agora substitua k em cada uma das frações acima e obterá o respectivo valor de cada uma.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divisão Inversamente proporcional.
por Wizard » Dom Jan 01, 2012 20:27
- 2 Respostas
- 3691 Exibições
- Última mensagem por Wizard

Sex Jan 06, 2012 01:47
Tópicos sem Interação (leia as regras)
-
- Grandeza direta e inversamente proporcional.
por Joseane Lopes » Qua Abr 27, 2011 21:42
- 1 Respostas
- 2385 Exibições
- Última mensagem por MarceloFantini

Qui Abr 28, 2011 00:48
Matemática Financeira
-
- Divisão proporcional
por karenblond » Seg Ago 29, 2011 23:23
- 3 Respostas
- 2473 Exibições
- Última mensagem por Neperiano

Qua Ago 31, 2011 14:58
Sistemas de Equações
-
- DIVISÃO PROPORCIONAL
por Ailton » Ter Fev 21, 2012 01:47
- 0 Respostas
- 1335 Exibições
- Última mensagem por Ailton

Ter Fev 21, 2012 01:47
Matemática Financeira
-
- Divisão Proporcional
por Raphael Feitas10 » Ter Nov 27, 2012 00:25
- 0 Respostas
- 1463 Exibições
- Última mensagem por Raphael Feitas10

Ter Nov 27, 2012 00:25
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.