• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questao de porcentagem bobinha ms tirou meu sono

questao de porcentagem bobinha ms tirou meu sono

Mensagempor escova » Sáb Abr 30, 2011 01:54

boa noite, es a dita cuja

'em meados de 2007 foram desmatados 11532km² ja em meados de 2008 foram 11968km² , com base nisso pode-se afirmar que de meados de 2007 a meados de 2008 o desmatamento teve um aumento aproximadamente de:
2,4% / 3,8% / 4,8% / 5,0% / 6,2% --- gabarito marca 3,8%

eu achei 3,78..% sera q a banca aproximou o valor para 3,8 na resposta?... prova A pmerj 2009
escova
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 29, 2011 00:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletronica
Andamento: formado

Re: questao de porcentagem bobinha ms tirou meu sono

Mensagempor FilipeCaceres » Sáb Abr 30, 2011 02:09

Regra de Três
11532 \longrightarrow 100
11968 \longrightarrow x

x=\frac{11968.100}{11532}\approx 103,78

Ou seja, teve um aumento de 3,78%

Portanto, o aumento foi de 3,8 %

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: questao de porcentagem bobinha ms tirou meu sono

Mensagempor luizeduardo » Dom Mai 01, 2011 19:43

Tenho uma relação que utilizo bastante para resolver questões semelhantes a esta:


n=\frac{parte}{todo}.100


11 968 - 11 532 = 436 (parte aumentada)
11 532 (todo - do qual a porcentagem foi aplicada)

n=\frac{436}{11532}.100\approx3,78%%

Espero ter ajudado e complementado a resposta do Filipe.

Luiz Eduardo
luizeduardo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Abr 24, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: questao de porcentagem bobinha ms tirou meu sono

Mensagempor FilipeCaceres » Dom Mai 01, 2011 20:21

Para quem não esta muito habituado a resolver este tipo de questão acredito que a melhor forma seja fazer por regra de três mesmo, pois a pessoa pode se perder quem é a parte ou quem é o todo.

Abraço à todos.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59