• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Séries] Há uma fórmula explicita para esta série?

[Séries] Há uma fórmula explicita para esta série?

Mensagempor Rilke » Sáb Out 13, 2012 13:42

Alguém sabe se há uma fórmula para a série abaixo.
É uma dúvida antiga que achei nos meus apontamentos.

S_n=\sum_{i=0}^n \frac{1}{(1+ia)}

Grato pela atenção.
Rilke
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 13, 2012 12:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: formado

Re: [Séries] Há uma fórmula explicita para esta série?

Mensagempor e8group » Sáb Out 13, 2012 16:07

Eu tenho uma idéia ,não sei se estar certo mas de qual quer forma vou compartilhar .


Visto que :



A_1 = 1 + a


r = a


A_n = A_{n-1} +a


A_n = A_1 + (n-1)a



S_m = \frac{m(A_1 + A_m )}{2}  \implies S_m = \frac{m( 2(a+1) + (n-1)a}{2} . Assim , teremos que :




\sum _{j=0}^n \frac{1}{(1+a_j)}  =   S_n ^{-1} =   \frac{2}{n( 2(a+1) + (n-1)a ) }   =    \frac{2}{n( (n+1)a +2)}


Espero estar certo , se não faz sentido ignore .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Há uma fórmula explicita para esta série?

Mensagempor e8group » Sáb Out 13, 2012 16:16

Hmm . Eu testei alguns valores aqui e realmente não faz sentido . Se fosse ,

\sum_{i=0}^{n} 1 +ai , poderíamos dizer que \sum_{i=0}^{n} 1 +ai   =  \frac{n(a(n+1) +2)}{2}  + 1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Há uma fórmula explicita para esta série?

Mensagempor MarceloFantini » Sáb Out 13, 2012 17:14

Isto não é uma série, é uma soma parcial. Além disso, o que é a? Existe alguma informação a respeito dele, como por exemplo se |a|<1? Ou a>0? Claramente ai \neq -1 por condições de existência, mas parece pouco.

Santhiago, lembre-se que

\sum_{i=0}^n \frac{1}{1+ia} = \frac{1}{1 + a} + \cdots + \frac{1}{1+na} \neq S_n^{-1} = \frac{1}{\sum_{i=0}^n 1+ia} = \frac{1}{(1+a) + \cdots + (1+na)}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Séries] Há uma fórmula explicita para esta série?

Mensagempor Rilke » Sáb Out 13, 2012 18:19

Prezado Marcelo,
tem razão, sendo formal, o termo série é reservado para soma infinita dos elementos de uma sequência e portanto só seria série se n=\infty.

Quanto ao a é uma constante. As restrições fazem parte da questão, mas se ajudar podemos considera-la maior que zero.

Ajudaria muito qualquer informação, inclusive negativa, do tipo ninguém nunca ouviu falar de uma expressão para esta soma parcial.

Muito agradecido pela atenção e observações

Rilke
Rilke
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 13, 2012 12:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: formado

Re: [Séries] Há uma fórmula explicita para esta série?

Mensagempor Rilke » Dom Out 14, 2012 16:50

Prezados colegas, muito obrigado pela participação.
Tive que procurar um pouco mas consegui e, embora a solução seja mais complexa do que eu gostaria, finaliza a questão.

S_n=\sum_{i=1}^n \dfrac{1}{ai+1} = \dfrac{\varPsi^{(0)} (n+\dfrac{1}{a}+1)  - \varPsi^{(0)} (1+\dfrac{1}{a})} {a}

Onde \varPsi^{(n)} é a n-ésima derivada da função Digamma


Atenciosamente,
Rilke
Rilke
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 13, 2012 12:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.