• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como tirar a indeterminação

Como tirar a indeterminação

Mensagempor Nelio F Junior » Seg Nov 02, 2015 22:18

Boa noite!

estou com um problema para tirar a indeterminacao em um serie e Fourier, ja jeguei nessa somatoria com + 1/pi mas nao consigo passar para n2

somatoria.png
somatoria.png (2 KiB) Exibido 1913 vezes



para poder chegar nessa outra resposta.

Sem título.png
Nelio F Junior
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 02, 2015 22:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng Mecatrônica
Andamento: cursando

Re: Como tirar a indeterminação

Mensagempor adauto martins » Sex Nov 06, 2015 18:27

f(x)é periodica de periodo L=2\pi,pois f(x)=f(x+2\pi)......logo pode ser expandida em uma serie de fourier...
f(x)={a}_{0}/2+\sum_{1}^{\infty}({a}_{n}cos(n \pi t/L)+{b}_{n}sen(n \pi t/L))...onde f(x)=0...n=2k-1,k=1,2,......logo,
f(x)={a}_{0}/2+\sum_{1}^{\infty}({a}_{2k}cos(2k \pi t/2.\pi)+{b}_{2k}sen(2k \pi t/2.\pi)))={a}_{0}/2+\sum_{1}^{\infty}({a}_{2k}cos(kt)+{b}_{2k}sen(kt))...onde...
{a}_{0}=1/2\pi\int_{0}^{2\pi}({(-1)}^{0}+1cos(0x)/(1-{0}^{2})\pi)dx=1/2\pi.\int_{0}^{2\pi}(2./\pi)dx=1/2\pi(2/\pi).2\pi=2/\pi\Rightarrow {a}_{0}=2. / \pi......
{a}_{2k}=1/2\pi\int_{- \pi}^{\pi}({(-1)}^{2k}+1)cos(kt)/(1-{(2k)}^{2}).\pi)dt=(1/2\pi)({(-1)}^{2k}+1)/( \pi. k(1-{(2k)}^{2})(sen(k(\pi))-senk(-k. \pi)=0...
{b}_{2k}=1/2\pi\int_{- \pi}^{\pi}({(-1)}^{2k}+1)sen(kt)/(1-{(2k)}^{2}) \pi))dt==-(1/2\pi)({(-1)}^{2k}+1)/(1-{(2k)}^{2})k.\pi).(cos(k(\pi)-cos(-k.\pi))=2/({(2k)}^{2}-1)k.{\pi}^{2}...logo...
f(x)={a}_{0}/2+\sum_{1}^{\infty}2.(sen(kt)/({(2k}^{2}-1)k{\pi}^{2})=1/\pi+2.sent/(3.{\pi}^{2})+\sum_{2}^{\infty}2.(sen(kt)/({(2k)}^{2}-1)k.{\pi}^{2})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Como tirar a indeterminação

Mensagempor adauto martins » Dom Nov 08, 2015 12:22

uma correçao...
errei no calculo dos {a}_{2k},{b}_{2k}......f(x) é uma funçao par,pois depende do cosseno...entao...
{b}_{2k}=1/2\pi\int_{-\pi}^{\pi}\sum_{1}^{\infty}({(-1)}^{2k}+1/(1-{(2k)}^{2}).\pi)senkt.coskt dt=0,pois senkt é impar e coskt é par,logo o produto sera impar,e a integral de uma funçao impar em intervalo simetrico é zero...
{a}_{2k}=1/2\pi\int_{-\pi}^{\pi}\sum_{1}^{\infty}({-1}^{2k}+1/(1-{2k}^{2}.\pi)coskt.coskt dt=1/2\sum_{1}^{\infty}\int_{-\pi}^{\pi}(2/(1-{(2k)}^{2}.\pi){(coskt)}^{2}dt=1/2\sum_{1}^{\infty}(2/(1-{(2k)}^{2}.\pi)\int_{0}^{2 \pi}{(coskt)}^{2}dt=1/\pi\sum_{1}^{\infty}(1/(1-{(2k)}^{2}).\pi(senkt.coskt/k)[\pi,-\pi]+1/2\int_{0}^{2\pi}dt=1/\pi\sum_{1}^{\infty}(1/(1-{(2k)}^{2}).\pi).\pi\Rightarrow {a}_{2k}=1/\pi\sum_{1}^{\infty}(1/(1-{(2k)}^{2})
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron