por Prof Prevaricador » Dom Abr 14, 2013 19:39
Este exercício nem sei por onde começar...
Sem utilizar o método de indução matemática, mostre que:

, n ? 1
Podem dar-me um empurrãozinho?
P.S. - Penso que seja suposto usar as igualdade binomiais
mas não estou a ver como...

-
Prof Prevaricador
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 29, 2012 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Dom Abr 14, 2013 20:52
Pensei da seguinte forma :
Solução :
Desenvolvendo ,

,segue

.
E ainda ,


.
OBS.:

.
Dica : Mostre que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Prof Prevaricador » Dom Abr 14, 2013 21:08
Obrigado pela ajuda santhiago!!
Vou ler melhor a tua explicação mas entretanto,
após uma leitura mais aprofundada sobre esta matéria estou
a pensar usar a Lei da Simetria e a Convolução de Vandermonde...

Aplicando a lei da simetria:

Nota:(tenho dúvidas se se pode aplicar por causa do "i" que ficou de fora...)

Aplicando a Convolução de Vandermonde

Ficando com

Ou seja, a demonstração dá-me errado!!
Não consigo perceber porquê...
Podes verificar esta resolução e porque é que dá errado?
Abraço
-
Prof Prevaricador
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 29, 2012 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Prof Prevaricador » Seg Abr 15, 2013 13:51
Santhiago:
Não consegui resolver este exercíco com a Convolução de Vandermonde
e acho que nem sequer se pode aplicar neste caso...
Mas continuo sem perceber a tua resoluçao!
Neste passo:

o que é que aconteceu ao

Além disso, ao desevolver não te esqueceste que no divisor

?
Cumprimentos
-
Prof Prevaricador
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 29, 2012 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Seg Abr 15, 2013 16:07
Então ,observe que

não é verdade ? .
Assim ,

.
Quando

veja como fica cada parcela :
(...)
Certo ?
OBS_1.: A solução que indiquei infelizmente não é adequada .Convenhamos que não é simples mostrar que

é igual a

.
OBS_2.:Acredito que seu pensamento está correto ao utilizar Convolução de Vandermonde.Mas que tal trabalhar antes em

de forma a eliminar o termo "i" ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Seg Abr 15, 2013 18:18
Ok , vou analisar o exercício do outro tópico .Qualquer evolução no mesmo postarei lá .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Indução Matemática
por Beatriz4 » Sex Nov 25, 2011 21:25
- 2 Respostas
- 1800 Exibições
- Última mensagem por Beatriz4

Sex Nov 25, 2011 23:23
Funções
-
- Método da indução matématica
por cardosor23 » Seg Mar 26, 2012 19:38
- 0 Respostas
- 1048 Exibições
- Última mensagem por cardosor23

Seg Mar 26, 2012 19:38
Álgebra Elementar
-
- [Somatório] Provar pelo Método de Indução Matemática
por Prof Prevaricador » Dom Abr 14, 2013 16:25
- 2 Respostas
- 4942 Exibições
- Última mensagem por Prof Prevaricador

Dom Abr 14, 2013 18:35
Sequências
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2568 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Indução Matemática
por gramata » Qua Set 02, 2009 16:52
- 0 Respostas
- 2991 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:52
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.