por Aliocha Karamazov » Sex Set 09, 2011 01:25
Pessoal, vou postar nessa seção, pois esse exercício está no capítulo de sequência do livro...
Usando a propriedade arquimediana, prove que se

para todo

, então

-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por fraol » Sex Dez 16, 2011 19:05
Lá vai uma tentativa: (todo n Natural)

Se n tende a 0 então ficaremos com algo assim

o que é sempre verdade para qualquer

real e nada concluímos.
Se n tende ao

então ficaremos com

e portanto

.
É isso aí. Que tal?
Editado pela última vez por
fraol em Sáb Dez 17, 2011 06:16, em um total de 1 vez.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MarceloFantini » Sáb Dez 17, 2011 00:05
Se fosse menor ou igual talvez, mas

não faz muito sentido.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fraol » Sáb Dez 17, 2011 06:13
Oops!
Está certo Marcelo,
Vou repensar a tentativa, você tem alguma dica?
Abç,
Francisco.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Sáb Dez 17, 2011 20:53
Repensando e usando melhor o enunciado, vamos a uma nova parcial:
(1) A propriedade Arquimediana diz que dados

tais que

então existe algum

tal que

.
(2) Da hipótese do enunciado temos

, invertendo ficamos com

.
(3) Aplicando a Arquimediana em (2) pode-se, então, afirmar que existe algum

tal que

.
(4) Mas olhando para (3) e (1), vemos que o tal

em (3) só existirá se

E agora eu encalhei, será que foi a cerveja? Será que teremos que partir para uma contradição para provar a hipótese?
Bom, se alguém tiver alguma dica, por favor, manda pra cá.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Seg Dez 19, 2011 19:53
Retomando o raciocínio da minha intervenção anterior e, corrigindo alguns equívocos temos o seguinte:
(1) A propriedade Arquimediana diz que dados

tais que

então existe algum

tal que

.
(2) Da hipótese do enunciado temos

. Vamos supor então que

e portanto

.
(3) Aplicando a Arquimediana em (2) pode-se, então, afirmar que existe algum

tal que

.
(4) Como

então

também, chamemos esse produto de

.
(5) Assim, chegamos a uma contradição:

e

. Ambos

e

naturais quaisquer contrariando a hipótese dada no enunciado original e a nossa suposição de que

.
(6) Portanto, só resta aceitar que

.
Aliás, há outra forma de forma provar isso. Antes teríamos que provar que o ínfimo do conjunto {

} é igual a 0 (usando a Arquimediana). E daí usaríamos limites, mas aí estaríamos usando outros recursos além da Arquimediana.
Demorou mas fechou.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Prove usando a Propriedade Arquimediana...] Propriedade Arq
por alessandro » Seg Abr 16, 2012 19:10
- 1 Respostas
- 1559 Exibições
- Última mensagem por alessandro

Seg Abr 16, 2012 19:12
Sequências
-
- Provar Propriedade Arquimediana
por Jovani Souza » Sáb Mai 18, 2013 12:32
- 1 Respostas
- 1764 Exibições
- Última mensagem por e8group

Sáb Mai 18, 2013 16:52
Sequências
-
- Funções - provar propriedade
por emsbp » Sáb Jul 07, 2012 17:59
- 2 Respostas
- 1533 Exibições
- Última mensagem por emsbp

Dom Jul 08, 2012 18:27
Funções
-
- Demonstre a propriedade
por Aliocha Karamazov » Sáb Jul 09, 2011 02:02
- 1 Respostas
- 1250 Exibições
- Última mensagem por Guill

Dom Jul 10, 2011 09:33
Funções
-
- Racionais: propriedade
por Victor Gabriel » Dom Mai 12, 2013 15:58
- 0 Respostas
- 1344 Exibições
- Última mensagem por Victor Gabriel

Dom Mai 12, 2013 15:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.