• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Não sei como Resolver

[Limite] Não sei como Resolver

Mensagempor eli83 » Qua Out 10, 2012 09:48

Aplicando o conceito de existência de limite, verificar se existe o limite da seguinte função quando x tende para zero.

\begin{equation*}
f(x) = \left\{
\begin{array}{rl}
5 & \text{se } x\neq0\\
6 & \text{se } x\doteq0\\
\end{array} \right.
\end{equation*}

Não sei como resolver este. Alguém poderia me ajudar?
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 18:06

Sim, o limite existe pois:

\lim_{x\rightarrow0^+} f(x) = 5

e

\lim_{x\rightarrow0^-} f(x) = 5

Lembre-se, como x tende a 0, x é próximo, mas diferente de 0, ou seja f(x) = 5.
Editado pela última vez por MrJuniorFerr em Qua Out 10, 2012 23:26, em um total de 1 vez.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 21:07

Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:04

MarceloFantini escreveu:Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
´

Verdade, não é uma função constante inteiramente.
Sim, eu sei. A função no ponto zero é 6. Mas o exercício não quer a função no ponto zero e sim valores próximos a zero, ou seja, diferente de zero, por exemplo, -0,01 e 0,01. Estes dois números são iguais ou diferentes de zero? Pois se você os considera diferente de zero, então temos que verificar os limites laterais de f(x)=5.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 23:07

Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:13

MarceloFantini escreveu:Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.


Ah sim, entendi.
constante = contínua ?
Acredito que me expressei mal, pois quando coloquei que era uma função constante, era pelo fato da função não estar em função de x, ou seja, ser apenas números e não pelo fato de ser contínua ou não.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 23:17

Uma função constante é contínua em todos os pontos, que não é o caso aqui. Por isso a observação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:22

Entendi Marcelo. Obrigado pela observação.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59