por eli83 » Qua Out 10, 2012 09:48
Aplicando o conceito de existência de limite, verificar se existe o limite da seguinte função quando x tende para zero.

Não sei como resolver este. Alguém poderia me ajudar?
-
eli83
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Out 06, 2012 11:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por MrJuniorFerr » Qua Out 10, 2012 18:06
Sim, o limite existe pois:

e

Lembre-se, como x tende a 0, x é próximo, mas diferente de 0, ou seja

.
Editado pela última vez por
MrJuniorFerr em Qua Out 10, 2012 23:26, em um total de 1 vez.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Qua Out 10, 2012 21:07
Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Qua Out 10, 2012 23:04
MarceloFantini escreveu:Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
´
Verdade, não é uma função constante inteiramente.
Sim, eu sei. A função no ponto zero é 6. Mas o exercício não quer a função no ponto zero e sim valores próximos a zero, ou seja, diferente de zero, por exemplo, -0,01 e 0,01. Estes dois números são iguais ou diferentes de zero? Pois se você os considera diferente de zero, então temos que verificar os limites laterais de

.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Qua Out 10, 2012 23:07
Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Qua Out 10, 2012 23:13
MarceloFantini escreveu:Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.
Ah sim, entendi.
constante = contínua ?
Acredito que me expressei mal, pois quando coloquei que era uma função constante, era pelo fato da função não estar em função de x, ou seja, ser apenas números e não pelo fato de ser contínua ou não.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Qua Out 10, 2012 23:17
Uma função constante é contínua em todos os pontos, que não é o caso aqui. Por isso a observação.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Qua Out 10, 2012 23:22
Entendi Marcelo. Obrigado pela observação.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolver limite?
por raquelzinha72 » Dom Jun 05, 2016 08:32
- 1 Respostas
- 2600 Exibições
- Última mensagem por Cleyson007

Dom Jun 05, 2016 10:57
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver limite exponencial
por joaofonseca » Sex Mar 30, 2012 12:59
- 2 Respostas
- 2109 Exibições
- Última mensagem por joaofonseca

Sáb Mar 31, 2012 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse limite?
por samra » Sáb Mar 31, 2012 02:38
- 4 Respostas
- 3344 Exibições
- Última mensagem por fraol

Dom Abr 01, 2012 14:56
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse limite?
por duborgis » Sex Abr 06, 2012 13:29
- 12 Respostas
- 7364 Exibições
- Última mensagem por Fabio Wanderley

Dom Abr 08, 2012 16:04
Cálculo: Limites, Derivadas e Integrais
-
- como resolver esse limite
por mayconf » Dom Set 23, 2012 01:31
- 4 Respostas
- 2464 Exibições
- Última mensagem por mayconf

Seg Set 24, 2012 02:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.