• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstrar função hiperbólica

Demonstrar função hiperbólica

Mensagempor samra » Sáb Out 06, 2012 15:41

Como faço para provar a identidade hiperbólica abaixo?

senh\left(\frac{1}{2}x \right) = +-  \sqrt[]{\frac{cosh x-1}{2}}

Obg
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor MarceloFantini » Sáb Out 06, 2012 16:16

Você pode tentar usar a definição de seno hiperbólico: \sinh x = \frac{e^x - e^{-x}}{2}, daí \sinh^2 x = \left( \frac{e^x - e^{-x}}{2} \right)^2 e trabalhe pra chegar no quadrado da expressão dada.

Outra forma é você usar fórmulas de arco duplo de seno e cosseno hiperbólico (que eu não sei de cabeça), deve sair mais facilmente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor samra » Sáb Out 06, 2012 18:02

Olha o que eu fiz:

senh \left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{coshx-1}{2}}

=

cosh (x) = cosh \left(\frac{x}{2} + \frac{x}{2} \right)

=

cosh \left(\frac{x}{2} \right). cosh \left(\frac{x}{2} \right) + senh \left(\frac{x}{2} \right). senh \left(\frac{x}{2} \right)

=

{cosh}^{2}\left(\frac{x}{2} \right) + {senh}^{2}\left(\frac{x}{2} \right)

sendo {cosh}^{2} \alpha - {senh}^{2}\alpha = 1 temos que:

\alpha = \frac{x}{2}

O que nos dá {cosh}^{2}\frac{x}{2} = 1 + {senh}^{2}\frac{x}{2}

O que eu devo fazer agora?

Obg, att.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor MarceloFantini » Sáb Out 06, 2012 18:15

Se \cosh x = \cosh^2 \frac{x}{2} = 1 + \sinh^2 \frac{x}{2}, então \cosh x = \cosh^2 \frac{x}{2} + \sinh^2 \frac{x}{2} = 1 + 2 \sinh^2 \frac{x}{2}, portanto

\sinh^2 \frac{x}{2} = \frac{\cosh x - 1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.