por samra » Sáb Out 06, 2012 15:41
Como faço para provar a identidade hiperbólica abaixo?
![senh\left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{cosh x-1}{2}} senh\left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{cosh x-1}{2}}](/latexrender/pictures/b6c2ce823bd1503f71dc87bd2af9ecac.png)
Obg
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
por MarceloFantini » Sáb Out 06, 2012 16:16
Você pode tentar usar a definição de seno hiperbólico:

, daí

e trabalhe pra chegar no quadrado da expressão dada.
Outra forma é você usar fórmulas de arco duplo de seno e cosseno hiperbólico (que eu não sei de cabeça), deve sair mais facilmente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por samra » Sáb Out 06, 2012 18:02
Olha o que eu fiz:
![senh \left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{coshx-1}{2}}
=
cosh (x) = cosh \left(\frac{x}{2} + \frac{x}{2} \right)
=
cosh \left(\frac{x}{2} \right). cosh \left(\frac{x}{2} \right) + senh \left(\frac{x}{2} \right). senh \left(\frac{x}{2} \right)
=
{cosh}^{2}\left(\frac{x}{2} \right) + {senh}^{2}\left(\frac{x}{2} \right) senh \left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{coshx-1}{2}}
=
cosh (x) = cosh \left(\frac{x}{2} + \frac{x}{2} \right)
=
cosh \left(\frac{x}{2} \right). cosh \left(\frac{x}{2} \right) + senh \left(\frac{x}{2} \right). senh \left(\frac{x}{2} \right)
=
{cosh}^{2}\left(\frac{x}{2} \right) + {senh}^{2}\left(\frac{x}{2} \right)](/latexrender/pictures/da0608212aee3ab69c802b8b30462fcc.png)
sendo

temos que:

O que nos dá

O que eu devo fazer agora?
Obg, att.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstrar que a função f é igual a uma certa série
por fff » Seg Jan 05, 2015 17:15
- 4 Respostas
- 4326 Exibições
- Última mensagem por fff

Qua Jan 07, 2015 18:14
Sequências
-
- Conceitos de Trigonometria Esferica e Hiperbólica
por pequena » Dom Set 06, 2009 16:39
- 0 Respostas
- 1276 Exibições
- Última mensagem por pequena

Dom Set 06, 2009 16:39
Trigonometria
-
- Como demonstrar??
por manuoliveira » Sex Mar 23, 2012 18:25
- 2 Respostas
- 1352 Exibições
- Última mensagem por manuoliveira

Sáb Abr 14, 2012 19:33
Funções
-
- Demonstrar - Primitivas
por samra » Qua Out 03, 2012 23:54
- 3 Respostas
- 1764 Exibições
- Última mensagem por young_jedi

Sex Out 05, 2012 11:24
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade triangular] Demonstrar por absurdo
por Aliocha Karamazov » Qua Set 28, 2011 01:07
- 1 Respostas
- 1643 Exibições
- Última mensagem por LuizAquino

Qua Set 28, 2011 17:57
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.