por Cassiano » Ter Set 25, 2012 11:41
Bom dia.
Tenho um problema matemático que estou com dificuldades para resolver.
Eu tenho um certo conhecimento dos conceitos básicos de limites e continuidade, mas estou tendo muitas dificuldades para resolver o problema abaixo, pois não consigo eliminar a indeterminação dos denominadores.
Verifique se a seguinte função é contínua nos pontos X:
![x = 0 , x = 2, f(x) =
\begin{align}
\frac{1-{x}^{2}}{\sqrt[]{x}-1} , x>1 \\
\frac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{align} x = 0 , x = 2, f(x) =
\begin{align}
\frac{1-{x}^{2}}{\sqrt[]{x}-1} , x>1 \\
\frac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{align}](/latexrender/pictures/085d26ff48c60cf914d82a78bf77aab8.png)
Não domino esta ferramenta de criação de equações, então talvez eu não tenha feito corretamente. Espero que entendam e possam me ajudar, pois preciso muito.
Eu não consegui inserir um colchete para agrupar as 3 funções.
Desde já agradeço.
Cassiano
Editado pela última vez por
Cassiano em Ter Set 25, 2012 14:27, em um total de 1 vez.
-
Cassiano
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Set 25, 2012 11:32
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por LuizAquino » Qua Set 26, 2012 08:17
Cassiano escreveu:Bom dia.
Tenho um problema matemático que estou com dificuldades para resolver.
Eu tenho um certo conhecimento dos conceitos básicos de limites e continuidade, mas estou tendo muitas dificuldades para resolver o problema abaixo, pois não consigo eliminar a indeterminação dos denominadores.
Verifique se a seguinte função é contínua nos pontos X:
![x = 0 , x = 2, f(x) =
\begin{align}
\frac{1-{x}^{2}}{\sqrt[]{x}-1} , x>1 \\
\frac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{align} x = 0 , x = 2, f(x) =
\begin{align}
\frac{1-{x}^{2}}{\sqrt[]{x}-1} , x>1 \\
\frac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{align}](/latexrender/pictures/085d26ff48c60cf914d82a78bf77aab8.png)
Você já sabe que uma função é contínua em x = 0 se acontecer

.
Analisando a função, note que:

Já o limite será:

Conclusão: a função é contínua em x = 0.
De modo semelhante, a função é contínua em x = 2 se acontecer

.
Analisando a função, note que:

Já o limite será:

Conclusão: a função é contínua em x = 2.
Note que em nenhum dos dois casos houve uma indeterminação no cálculo do limite. Ou seja, em nenhum dos dois limites apareceu algo como "0/0". Portanto, não foi necessário efetuar simplificações.
Vamos imaginar agora que a pergunta fosse: essa função é contínua em x = 1?
Nesse caso, temos que f(1) = -5.
Já o limite lateral pela esquerda será:




Só com esses dois resultados já podemos dizer que a função não é contínua em x = 1. Mas vamos calcular também o limite pela direita para treinar:






Cassiano escreveu:Não domino esta ferramenta de criação de equações, então talvez eu não tenha feito corretamente. Espero que entendam e possam me ajudar, pois preciso muito.
Eu não consegui inserir um colchete para agrupar as 3 funções.
Use o seguinte código:
- Código: Selecionar todos
[tex]
f(x) =
\begin{cases}
\frac{1-{x}^{2}}{\sqrt{x}-1} , x>1 \\
\frac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{cases}
[/tex]
O resultado desse código será:

Para obter um resultado um pouco maior use o código:
- Código: Selecionar todos
[tex]
f(x) =
\begin{cases}
\dfrac{1-{x}^{2}}{\sqrt{x}-1} , x>1 \\
\dfrac{{2x}^{2}-2}{1-x}, x<1 \\
-5, x=1
\end{cases}
[/tex]
O resultado desse código será:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cassiano » Qua Set 26, 2012 09:04
Muito obrigado pela ajuda.
Ainda bem que você se antecipou e resolveu para x=1, pois eu escrevi o enunciado errado. O Correto era de fato para x=1.
Muito obrigado mais uma vez.
Cassiano
-
Cassiano
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Set 25, 2012 11:32
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] indeterminação?
por rafaelbr91 » Ter Mar 27, 2012 18:48
- 3 Respostas
- 2078 Exibições
- Última mensagem por nietzsche

Ter Mar 27, 2012 19:31
Cálculo: Limites, Derivadas e Integrais
-
- Indeterminação de Limites
por dsidney30 » Sex Mai 03, 2013 15:53
- 1 Respostas
- 1460 Exibições
- Última mensagem por young_jedi

Dom Mai 05, 2013 19:07
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] - Indeterminação e Impossibilidade
por Scheu » Qui Fev 02, 2012 00:14
- 2 Respostas
- 3822 Exibições
- Última mensagem por Scheu

Sex Fev 03, 2012 00:03
Cálculo: Limites, Derivadas e Integrais
-
- Indeterminação limites fundamental
por Rosi7 » Sex Mai 22, 2015 11:49
- 3 Respostas
- 4604 Exibições
- Última mensagem por Jennicop

Ter Dez 22, 2015 03:20
Cálculo: Limites, Derivadas e Integrais
-
- Limites - Indeterminação do tipo 0X+infinito
por Pollyanna Moraes » Sáb Abr 28, 2012 15:04
- 1 Respostas
- 2852 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 09:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.