por bahcore » Qui Set 20, 2012 04:58
Por favor, ainda não consegui resolver esse aqui. Me ajudem com o passo a passo?
A área sob a curva y=e^(x/2) de x=-3 a x=2 é dada por:
A) 4,99
B) 3,22
C) 6,88
D) 1,11
E) 2,22
Desde ja muito obrigada!!
-
bahcore
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 04:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por MarceloFantini » Qui Set 20, 2012 13:16
Basta calcular

. Qual foi a primitiva que você encontrou?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por dgo » Dom Set 23, 2012 14:44
boas, substitui os valores e não bateu nenhum resultado , pode me ajudar mais por favor
-
dgo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Set 23, 2012 14:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por MarceloFantini » Dom Set 23, 2012 15:37
Qual foi a primitiva que você encontrou?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por bahcore » Seg Set 24, 2012 04:22
o problema é que ainda não sei fazer calculos com esse "e", então não consegui sair daí...
-
bahcore
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 04:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por MarceloFantini » Seg Set 24, 2012 14:50
A primitiva desta função é

, agora basta usar o teorema fundamental do cálculo. Para ver que é esta a primitiva, faça

, então

e faça a integração.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área entre a curva
por mayconf » Sex Mai 31, 2013 14:26
- 1 Respostas
- 1464 Exibições
- Última mensagem por e8group

Sex Mai 31, 2013 15:35
Cálculo: Limites, Derivadas e Integrais
-
- Achar os pontos sobre a curva
por Fernandobertolaccini » Sex Jul 04, 2014 13:37
- 1 Respostas
- 1291 Exibições
- Última mensagem por young_jedi

Sáb Jul 05, 2014 15:26
Cálculo: Limites, Derivadas e Integrais
-
- Calcular a area de uma curva, por integral
por bencz » Qui Ago 25, 2011 00:00
- 5 Respostas
- 3266 Exibições
- Última mensagem por LuizAquino

Sáb Set 03, 2011 21:37
Cálculo: Limites, Derivadas e Integrais
-
- [integral] questao sobre arco da curva
por sabrinasilveira » Seg Jun 29, 2015 00:11
- 0 Respostas
- 1471 Exibições
- Última mensagem por sabrinasilveira

Seg Jun 29, 2015 00:11
Cálculo: Limites, Derivadas e Integrais
-
- Questão aparentemente simples sobre área do paralelepípedo
por Burna Gioia » Dom Mai 17, 2015 21:10
- 1 Respostas
- 2922 Exibições
- Última mensagem por nakagumahissao

Ter Out 06, 2015 10:41
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.