por Erick Johnny » Ter Mai 29, 2012 11:01
Bom dia srs.
Estou com duvida nesse seguinte exercício:

A maneira de fazer essa questão foi por substituição, isolando x do sec3x² ficando:

dai tentei fazer por substituição, chamando sec3x de 'u', sabendo que sua derivada é: sec3x= 3sec3xtg3x. Desenvolvi mas não conseguir resolver a questão. Alguém pode me dar uma luz de como resolver isso?
Atenciosamente
Erick Johnny
-
Erick Johnny
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mai 29, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por LuizAquino » Ter Mai 29, 2012 12:40
Erick Johnny escreveu:Estou com duvida nesse seguinte exercício:

A maneira de fazer essa questão foi por substituição, isolando x do sec3x² ficando:

dai tentei fazer por substituição, chamando sec3x de 'u', sabendo que sua derivada é: sec3x= 3sec3xtg3x. Desenvolvi mas não conseguir resolver a questão. Alguém pode me dar uma luz de como resolver isso?
Você cometeu dois erros
O primeiro erro foi apenas um deslize na digitação. Você deveria ter escrito:

Note que não há aquele "=" que você escreveu.
Já o segundo erro foi mais sério. Você não poderia "isolar o x" da secante como fez. Ou seja,
não é verdade que

.
Por exemplo, se você calcular o valor de

verá que é diferente do valor de

.
Para resolver essa integral, basta fazer a substituição

e

(ou seja,

). Nesse caso, temos que:

Agora tente concluir o exercício. Se você não conseguir terminar, então poste aqui até onde conseguiu avançar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Erick Johnny » Ter Mai 29, 2012 12:49
Obrigado Luiz,
Primeiro pelo erro, não tinha visto o erro de digitação. O segundo erro realmente foi gritante, sabia que saia por substituição mas achava que iria colocar a secante também.
Enfim, gostaria de saber se a resposta final seria:


-
Erick Johnny
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mai 29, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por LuizAquino » Ter Mai 29, 2012 13:37
Erick Johnny escreveu:Enfim, gostaria de saber se a resposta final seria:

No Brasil, nós usamos a notação log para representar o logaritmo decimal (ou seja, o logaritmo na base 10). Para representar o logaritmo natural (ou seja, o logaritmo na base e), usamos a notação ln.
Além disso, do jeito que você escreveu note que irá aparecer a constante c/6. Você poderia escrever diferente, de modo a ficar apenas uma constante c.
Em resumo, a resposta adequada seria:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Ajuda) Duvida no exercício de derivada.
por Kamila conka » Qui Fev 28, 2013 20:41
- 3 Respostas
- 2008 Exibições
- Última mensagem por Kamila conka

Sex Mar 01, 2013 18:32
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DESENVOLVER A DERIVADA TRIGONOMÉTRICA
por Matheusgdp » Ter Nov 03, 2015 17:34
- 5 Respostas
- 3429 Exibições
- Última mensagem por Cleyson007

Sex Nov 06, 2015 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivada trigonometrica
por mayara359 » Ter Jun 23, 2015 16:25
- 1 Respostas
- 2420 Exibições
- Última mensagem por Cleyson007

Qua Jun 24, 2015 17:33
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo] Derivada trigonométrica
por ericamila2 » Sáb Set 24, 2011 22:39
- 1 Respostas
- 1313 Exibições
- Última mensagem por LuizAquino

Sáb Set 24, 2011 23:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de Função Trigonométrica.
por Sobreira » Dom Dez 02, 2012 14:17
- 2 Respostas
- 3415 Exibições
- Última mensagem por MarceloFantini

Seg Dez 03, 2012 00:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.