• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite

limite

Mensagempor rhcruz » Dom Abr 29, 2012 13:11

\lim_{x\rightarrow1} \frac{{x}^{3}- 1}{x^4+3x-4}
rhcruz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Abr 29, 2012 12:54
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: limite

Mensagempor MarceloFantini » Dom Abr 29, 2012 14:04

Procure fatorar numerador e denominador e cancelar raízes em comum. Leia as regras do fórum, onde estão suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limite

Mensagempor rhcruz » Dom Abr 29, 2012 15:05

minha duvida é na fatoraçao do denominador
rhcruz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Abr 29, 2012 12:54
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: limite

Mensagempor MarceloFantini » Dom Abr 29, 2012 15:11

O que você encontrou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limite

Mensagempor rhcruz » Dom Abr 29, 2012 15:59

não consegui fazer, encontrei (x²+4)(x²-1) errado.
rhcruz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Abr 29, 2012 12:54
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: limite

Mensagempor DanielFerreira » Dom Abr 29, 2012 16:12

rhcruz escreveu:não consegui fazer, encontrei (x²+4)(x²-1) errado.

Note que 1 é uma das raízes de x^4 + 3x - 4,

então efetue a divisão \frac{x^4 + 3x - 4}{x - 1}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.