• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O limite existe ou não?

O limite existe ou não?

Mensagempor Cleyson007 » Sáb Abr 28, 2012 17:30

Boa tarde a todos!

Diga se o limite a seguir existe ou não, se existir determine o seu valor:

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{\sqrt[]{x+2}}

Agradeço se alguém souber resolver e puder me ajudar.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: O limite existe ou não?

Mensagempor Guill » Sáb Abr 28, 2012 18:23

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{\sqrt[]{x+2}}

\lim_{x\rightarrow\infty}\frac{1}{\frac{\sqrt[]{x+2}}{\sqrt[]{x}}}

\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{\frac{x+2}{x}}}

\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{1+\frac{2}{x}}} = 1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: O limite existe ou não?

Mensagempor Cleyson007 » Sáb Abr 28, 2012 18:28

Guill, acredito que o meu professor irá cobrar na prova a resolução por definicao de limite. Onde assim é utilizado um epsilon>0.
A prova da existencia desse limite seria:
|raiz de x/(raiz de x+2)-1|< epsilon

Não sei como continuar.

Poderia me ajudar?

Desde já te agradeço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: O limite existe ou não?

Mensagempor Guill » Dom Abr 29, 2012 15:09

Uma vez que o limite é no infinito, à medida que x cresce infinitamente, a função se aproxima mais de um determinado valor (nesse caso o número 1). Agora, tente partir disso:

\left|\sqrt[]{\frac{x}{x+2}}-1 \right| < k se x > n
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: