• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações Paramétricas] Comprimento da Curva

[Equações Paramétricas] Comprimento da Curva

Mensagempor vmouc » Ter Mar 27, 2012 14:53

Pessoal,

Essa questão caiu na minha prova de Calculo, ontem. Por favor me dêem uma ajuda pra entender.

Encontre o cumprimento da curva:
y= t.sen(t)
x= t.cos(t)

nos limites 2\pi\leq t \leq4\pi.

Fiz da seguinte forma:

\frac{dy}{dt}= sen(t) + t.cos(t) pela regra do produto (derivação)

\frac{dx}{dt}= cos(t)-t.sen(t)

Aplicando na equação de comprimento da curva:
\int_{}^{}\sqrt[]{\left(\frac{dy}{dt} \right)^2+\left(\frac{dx}{dt} \right)^2 dt}

Onde por regra o resultado seria:\int_{}^{}\sqrt[]{a^2+u^2}du= \frac{u}{2}\sqrt[]{a^2+u^2}+\frac{a^2}{2}ln\left|u+\sqrt[]{a^2+u^2} \right|+C

\frac{cos(t)-t.sen(t)}{2}.\sqrt[]{\left(sen^2t + t^2.cos^2t \right)+ \left(cos^2t + t^2sen^2t \right)} + \frac{sen^2t + t^2cos^2t}{2} . ln\left|\left(cos(t)-tsen(t) \right) +\sqrt[]{\left(sen^2t+t^2cos^2t \right)+\left(cos^2t +t^2sen^2t \right)}\right|+C

Pra tentar organizar, fiz o seguinte:

OBS: t^2\left(sen^2t+cos^2t \right)+\left(cos^2t+sen^2t \right)
Ficou: t^2+1

Voltando:


\frac{cos(t)-tsen(t)}{2}.\sqrt[]{t^2+1^2} + \frac{sen^2(t) + t^2cos^2(t)}{2}ln\left|cos(t)-tsen(t)+\sqrt[]{ t^2+1^2} \right|

Este é o caminho? Ja continuo...
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Equações Paramétricas] Comprimento da Curva

Mensagempor LuizAquino » Ter Mar 27, 2012 18:42

vmouc escreveu:Onde por regra o resultado seria: \int_{}^{}\sqrt[]{a^2+u^2}du= \frac{u}{2}\sqrt[]{a^2+u^2}+\frac{a^2}{2}ln\left|u+\sqrt[]{a^2+u^2} \right|+C

\frac{cos(t)-t.sen(t)}{2}.\sqrt[]{\left(sen^2t + t^2.cos^2t \right)+ \left(cos^2t + t^2sen^2t \right)} + \frac{sen^2t + t^2cos^2t}{2}\, . \, ln\left|\left(cos(t)-tsen(t) \right) +\sqrt[]{\left(sen^2t+t^2cos^2t \right)+\left(cos^2t +t^2sen^2t \right)}\right|+C


Aqui você cometeu um erro de interpretação. Note como apenas decorar "regras" não é uma boa prática.

Nessa "regra" que você exibiu, o termo a² é uma constante. Ou seja, esse termo não depende da variável da integral (que no caso é u).

Mas quando você aplicou essa "regra", você considerou indevidamente que o termo \left(\frac{dy}{dt}\right)^2 é uma constante. Esse não é o caso, já que esse termo é dependente da variável da integral (que no caso é t).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Equações Paramétricas] Comprimento da Curva

Mensagempor vmouc » Qui Abr 19, 2012 13:59

Então não entendo a forma que deveria ser feito. Você poderia só deixar um pouco mais claro de como deveria ser resolvido, por gentileza?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Equações Paramétricas] Comprimento da Curva

Mensagempor LuizAquino » Qui Abr 19, 2012 15:10

vmouc escreveu:Então não entendo a forma que deveria ser feito. Você poderia só deixar um pouco mais claro de como deveria ser resolvido, por gentileza?


Você já sabe que:

\frac{dy}{dt} = \,\textrm{sen}\, t +  t\cos t

\frac{dx}{dt} = \cos t - t\,\textrm{sen}\, t

Desse modo, temos que:

\int \sqrt{\left(\frac{dy}{dt} \right)^2+\left(\frac{dx}{dt} \right)^2} \, dt = \int \sqrt{\left( \,\textrm{sen}\, t +  t\cos t \right)^2+\left( \cos t - t\,\textrm{sen}\, t\right)^2} \, dt

= \int \sqrt{t^2 + 1} \, dt

Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?