• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de uma função] Iniciante em calculo

[Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 01:01

Boa noite a todos.
Tenho uma grande dificuldade em operações algébricas. Não consigo encontrar a resposta do livro para a derivada da seguinte função:

f(x)=2x/(1+x)^3
Usando as regras de derivação cheguei até o seguinte ponto:
f'(x)=(1+x)^3*2x' - 2x*(1+x)^3'/((1+x)^3)^2
f'(x)=2*(1+x)^3 - 2x*3(x+1)^2/(1+3)^6
deste ponto em diante nada que eu tente me faz chegar no resultado:
f'(x)=2(1-2x)/(1+x)^4

Agradeço a atenção de todos!
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor MarceloFantini » Seg Fev 27, 2012 01:11

Leandro, poderia usar LaTeX no seu desenvolvimento para que possamos entender onde foi seu erro?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 01:57

Mais é claro! É meu primeiro post.
Então segue:
A função é a seguinte:
f(x)=\frac{2x}{(1+x)^3}

Consegui chegar até o seguinte ponto:
f'(x)=\frac{(1+x)^3*2x'-2x*((1+x)^3')}{((1+x)^3)^2}
f'(x)=\frac{2(1+x)^3-6x(1+x)^2}{(1+x)^6}

Não consigo achar o seguinte resultado:
f'(x)=\frac{2(1-2x)}{(1+x)^4}

Tenho certeza que meu problema são as operações algébricas. Agradeço a atenção.
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 02:31

Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:

f(x)=\frac{2x}{(1+x)^3}

f'(x)=\frac{(1+x)^3*2x'-2x((1+x)^3')}{((1+x)^3)^2}

f'(x)=\frac{2(1+x)^3-6x(1+x)^2}{(1+x)^6}

Colocando 2(1+x)^2 em evidencia, temos:

f'(x)=\frac{2(1+x)^2*(x+1-3x)}{(1+x)^6}

Simplificando (1+x)^2 com (1+x)^6

f'(x)=\frac{2(1-2x)}{(1+x)^4}

Bom de qualquer forma agradeço, e o fato de ver minha resolução no fórum me fez enxergar as funções de outra forma. Vou continuar meus estudos. Abçs.
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor LuizAquino » Seg Fev 27, 2012 11:52

Leandro_Araujo escreveu:Tenho uma grande dificuldade em operações algébricas.


Leandro_Araujo escreveu:Tenho certeza que meu problema são as operações algébricas.


Leandro_Araujo escreveu:Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:


Eu recomendo você assista a videoaula do Nerckie sobre fatoração. O título da videoaula é "Matemática Zero - Aula 11 - Fatoração". Ela está disponível no canal dele no YouTube:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 14:10

LuizAquino escreveu:
Leandro_Araujo escreveu:Tenho uma grande dificuldade em operações algébricas.


Leandro_Araujo escreveu:Tenho certeza que meu problema são as operações algébricas.


Leandro_Araujo escreveu:Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:


Eu recomendo você assista a videoaula do Nerckie sobre fatoração. O título da videoaula é "Matemática Zero - Aula 11 - Fatoração". Ela está disponível no canal dele no YouTube:

http://www.youtube.com/nerckie


Estou assistindo e gostando bastante. Já tinha visto outras videoaulas do Nerckie. Algebra é imprescindível para o cálculo. Vlw!
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59