por Giu » Sáb Fev 11, 2012 14:08
Olá
Tenho que calcular uma integral usando a substituição indicada, no caso foi pedido:
![\int_{}^{} xdx/\sqrt[2]{(x+1}, \int_{}^{} xdx/\sqrt[2]{(x+1},](/latexrender/pictures/05584ecfe6e7c8f47b129c23009a5baf.png)
, t=
![\sqrt[2]{x+1} \sqrt[2]{x+1}](/latexrender/pictures/1a4918c18d7e32bcc010b0b56b47de5f.png)
tentei fazer de tudo nesse, substituir em t e depois isolar o x para substituir no x em cima, também não tenho e não achei nada parecido nos livros aqui
se puder me ajudar, eu agradeceria muito!
Giu
-
Giu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Fev 08, 2012 15:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Quimica Licenciatura
- Andamento: cursando
por LuizAquino » Sáb Fev 11, 2012 14:21
Giu escreveu:Tenho que calcular uma integral usando a substituição indicada, no caso foi pedido:
![\int x \,dx/\sqrt[2]{(x+1)} \int x \,dx/\sqrt[2]{(x+1)}](/latexrender/pictures/cdf7affd224733a9eccf47ba2c6d073a.png)
,
![t= \sqrt[2]{x+1} t= \sqrt[2]{x+1}](/latexrender/pictures/bf5e0169ef7b8f4a8b29d67ef33e8ac2.png)
Considerando

, temos que:

Como

, temos que

.
Dessa forma, podemos escrever que:

Agora termine o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Usando tecnicas de integrais por substituiçao simples]
por menino de ouro » Qua Out 24, 2012 23:10
- 1 Respostas
- 1581 Exibições
- Última mensagem por MarceloFantini

Qui Out 25, 2012 01:27
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:33
- 1 Respostas
- 3064 Exibições
- Última mensagem por Russman

Dom Jan 11, 2015 19:21
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:35
- 3 Respostas
- 4777 Exibições
- Última mensagem por Russman

Seg Jan 12, 2015 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:38
- 0 Respostas
- 1945 Exibições
- Última mensagem por Fernandobertolaccini

Dom Jan 11, 2015 17:38
Cálculo: Limites, Derivadas e Integrais
-
- Efetuar as operações indicadas
por douglasjro » Ter Abr 26, 2011 16:02
- 1 Respostas
- 1903 Exibições
- Última mensagem por guillcn

Ter Abr 26, 2011 17:28
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.