• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] limite - exponencial

[calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 17:51

\lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x}

nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor LuizAquino » Dom Out 30, 2011 18:24

beel escreveu:\lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²


O resultado desse limite é esse. Mas envie o seu desenvolvimento para que possamos verificar se ele está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 18:47

\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})=

continua...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 18:58

exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)\prime}{(e^x + x)\prime}) =
exp (\lim_{x\rightarrow\infty}\frac{2e^x}{(e^x + 1)}=
exp (\lim_{x\rightarrow\infty}\frac{(2e^x)\prime}{(e^x + 1)\prime})=
exp (\lim_{x\rightarrow\infty}\frac{(2e^x)}{(e^x)})=
exp (\lim_{x\rightarrow\infty} 2)=
exp (2) =
e^2
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor LuizAquino » Dom Out 30, 2011 19:02

beel escreveu:\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x} = exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x} = exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}= exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)} = exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})= exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x}) =

continua...

exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)\prime}{(e^x + x)\prime}) = exp (\lim_{x\rightarrow\infty}\frac{2e^x}{(e^x + 1)} = exp (\lim_{x\rightarrow\infty}\frac{(2e^x)\prime}{(e^x + 1)\prime})= exp (\lim_{x\rightarrow\infty}\frac{(2e^x)}{(e^x)}) =
exp (\lim_{x\rightarrow\infty} 2)= exp (2) = e^2


Ok. Basicamente você começou usando a propriedade e^{\ln u} = u (com u > 0).

Uma outra forma de fazer segue abaixo.

Note que para x>0, temos que \left(e^x + x\right)^\frac{2}{x} > 0 .

Vamos supor que esse limite seja igual a L. Então deve ocorrer L>0 . Sendo assim, podemos escrever:

L = \lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

\ln L = \ln \lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

Como a função logaritmo natural é contínua em todo o seu domínio, ela pode "entrar" nesse limite.

\ln L = \lim_{x\to\infty} \ln \left(e^x + x\right)^\frac{2}{x}

\ln L = \lim_{x\to\infty}  \frac{2}{x} \ln \left(e^x + x\right)

\ln L = \lim_{x\to\infty}   \frac{\ln \left(e^x + x\right)}{\frac{x}{2}}

\ln L = \lim_{x\to\infty}   \frac{\left[\ln \left(e^x + x\right)\right]^\prime}{\left(\frac{x}{2}\right)^\prime}

\ln L = \lim_{x\to\infty}   \frac{\frac{e^x+1}{e^x + x}}{\frac{1}{2}}

\ln L = 2\lim_{x\to\infty}   \frac{e^x+1}{e^x + x}

\ln L = 2\lim_{x\to\infty}   \frac{\left(e^x+1\right)^\prime}{\left(e^x+x\right)^\prime}

\ln L = 2\lim_{x\to\infty}   \frac{e^x}{e^x + 1}

\ln L = 2\lim_{x\to\infty}   \frac{\left(e^x\right):e^x}{\left(e^x + 1\right):e^x}

\ln L = 2\lim_{x\to\infty}   \frac{1}{1 + \frac{1}{e^x}}

\ln L = 2 \cdot \frac{1}{1+0}

L = e^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?