por beel » Dom Out 30, 2011 17:51
![\lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x} \lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x}](/latexrender/pictures/25e7f1e60b8fd2aebee835047bebdb98.png)
nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Dom Out 30, 2011 18:24
beel escreveu:
nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
O resultado desse limite é esse. Mas envie o seu desenvolvimento para que possamos verificar se ele está correto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Dom Out 30, 2011 18:47
![\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})= \lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})=](/latexrender/pictures/bee2d00a85fa7dbcde76094890df19b6.png)
continua...
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por beel » Dom Out 30, 2011 18:58
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE]LIMITE FUNDAMENTAL EXPONENCIAL
por beel » Sáb Set 03, 2011 22:11
- 3 Respostas
- 2280 Exibições
- Última mensagem por beel

Dom Set 04, 2011 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Limite com Exponencial
por Thyago Quimica » Qui Mai 24, 2012 17:44
- 1 Respostas
- 951 Exibições
- Última mensagem por LuizAquino

Qui Mai 24, 2012 22:03
Cálculo: Limites, Derivadas e Integrais
-
- Limite exponencial
por Jhennyfer » Qua Mai 14, 2014 20:07
- 5 Respostas
- 2694 Exibições
- Última mensagem por e8group

Sex Mai 16, 2014 13:09
Cálculo: Limites, Derivadas e Integrais
-
- limite envolvendo exponencial
por renat » Dom Jun 11, 2017 20:37
- 0 Respostas
- 2744 Exibições
- Última mensagem por renat

Dom Jun 11, 2017 20:37
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Limite fundamental Exponencial
por antonelli2006 » Ter Set 20, 2011 05:54
- 1 Respostas
- 1964 Exibições
- Última mensagem por LuizAquino

Ter Set 20, 2011 12:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.