• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicações do vetor gradiente] Aplicações das propriedades

[Aplicações do vetor gradiente] Aplicações das propriedades

Mensagempor TheoFerraz » Sex Out 28, 2011 16:14

A ideia é:

"determine uma curva \gamma (t) = (x(t),y(t)) que passe pelo ponto \gamma (0) = (1,2) e intercepte ortogonalmente todas as curvas da familia {x}^{2} + 2{y}^{2} = c\; , \; \forall \; c \in R "

O fato é que eu consegui terminar o exercicio mas nao estou convencido de uma passagem que eu fiz.

em um momento voce se depara igualando o gradiente da função f(x,y)= {x}^{2} + 2{y}^{2} que fica \nabla (x,y) = 2 \times (x,2y) á derivada da função gamma.

resulta um sistema assim:

x'(t) = x

y'(t) = 2y

Se voce imagina as variaveis x e y como funções, tudo bem, essas equações diferenciais vão apontar uma exponencial que de fato é a resposta. Mas pra mim elas não são funções. são variaveis do plano real, só. não são funçoes de t.
Não compreendo por que posso tratar o x do lado direito da igualdade como função. Na minha cabeça é só uma incógnita


Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Aplicações do vetor gradiente] Aplicações das proprieda

Mensagempor LuizAquino » Sáb Out 29, 2011 11:16

TheoFerraz escreveu:Estou tendo dificuldade nessa parte da teoria, alguem pode ajudar ? obrigado.


Vide uma interpretação geométrica do exercício (fora de escala).

interpretação-geométrica.png
interpretação-geométrica.png (9.69 KiB) Exibido 3210 vezes


Note que o ponto (x_0,\,y_0) pertence as curvas \gamma (t) e f(x,\,y)=c .

Dessa maneira, quando fazemos \nabla f(x,\,y) = \gamma^\prime(t) = (x^\prime(t),\,y^\prime(t)), estamos considerando essa equação em algum ponto (x_0,\, y_0) que pertence ao mesmo tempo a \gamma (t) e f(x,\,y)=c . Ou seja, esse ponto (x,\,y) no qual estamos avaliando f depende de t.

Sendo assim, no sistema de equações diferenciais abaixo x e y são funções de t:

\nabla f(x,\,y) = (x^\prime,\,y^\prime) \Rightarrow \begin{cases}2x = x^\prime \\ 4y = y^\prime \end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: