por Imscatman » Seg Out 03, 2011 00:18
Se
a e
b são números positivos, demonstre que a equação a seguir tem pelo menos uma solução no intervalo (-1, 1).

Cálculo 6 ed., James Stewart, p.117, q.62.
Já perdi horas com isso, e não há resposta em parte alguma. Como chutando valores de x no intervalo (-1, 1), geralmente se obtém parcelas negativas e, portanto, resposta negativa, minha estratégia foi tentar mostrar que ambas as parcelas são positivas num dado sub-intervalo dentro de (-1,1). Se eu conseguisse isto, mostraria que a função da esquerda (a soma à esquerda da igualdade, digo) varia entre valores negativos e positivos e, portanto, passa por zero - pois é uma função contínua e definida dentro do intervalo pedido.
No entanto fracassei.
Como
a e
b são positivos, cada parcela será positiva quando o denominador for positivo.
x³ + 2x² - 1 é positivo dentro do intervalo (-1,1) para
0.618 < x < 1.
* Esse 0.618 é aproximação de
![\frac{\sqrt[]{5}-1}{2} \frac{\sqrt[]{5}-1}{2}](/latexrender/pictures/9918704893c2bd1a0c876b26cac4a6df.png)
Mas
x³ + x - 2 nunca é positivo dentro intervalo! Só para
x > 1.
Então, aparentemente, eu precisaria mostrar que, nos casos em que a 1ª parcela é positiva (em
0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva como preciso, rs. Acho que isso é demais pra mim, hehehe.
Imagino que a real solução seja mais simples, com outra estratégia.
Se alguém puder ajudar, ficaria grato.
Obrigado pela atenção.
-

Imscatman
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mar 17, 2011 17:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Seg Out 03, 2011 01:07
Como o intervalo é aberto em -1 e 1, podemos multiplicar tudo por

e obteremos

. Agora considere esta relação no intervalo
![[-1,1] [-1,1]](/latexrender/pictures/d060b17b29e0dae91a1cac23ea62281a.png)
, ou seja, fechado em -1 e 1. Quando

, nós temos

. Tomando

, teremos

, logo pelo
Teorema de Bolzano a equação tem pelo menos uma raíz real no intervalo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Imscatman » Seg Out 03, 2011 01:37
Sensacional, Marcelo!

Muito obrigado.
-

Imscatman
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mar 17, 2011 17:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Imscatman » Seg Out 03, 2011 02:12
O tópico está resolvido, mas seria desperdício eu não perguntar o seguinte: minha linha de raciocínio tem alguma saída simples? Isto é, tem algum jeito praticável de, como eu disse
mostrar que, nos casos em que a 1ª parcela é positiva (em 0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva
?
Obviamente não é urgente, rs. Mas se alguém por acaso souber, enriqueceria o tópico.
Eu na verdade nem mesmo tentei. Estava cansado, hehe.
-

Imscatman
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mar 17, 2011 17:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema do Valor Intermediário (TVI)
por jemourafer » Sex Abr 13, 2012 14:51
- 1 Respostas
- 1832 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 14, 2012 00:17
Cálculo: Limites, Derivadas e Integrais
-
- Teorema do Valor Intermediário
por MCordeiro » Ter Mai 26, 2020 23:00
- 0 Respostas
- 2179 Exibições
- Última mensagem por MCordeiro

Ter Mai 26, 2020 23:00
Cálculo: Limites, Derivadas e Integrais
-
- Duvida no Teorema do valor intermediário.
por TheoFerraz » Sáb Abr 30, 2011 19:32
- 2 Respostas
- 2878 Exibições
- Última mensagem por TheoFerraz

Sáb Abr 30, 2011 19:40
Cálculo: Limites, Derivadas e Integrais
-
- Teomera do valor intermediário - exercício
por Danilo » Sáb Set 14, 2013 14:05
- 0 Respostas
- 1243 Exibições
- Última mensagem por Danilo

Sáb Set 14, 2013 14:05
Cálculo: Limites, Derivadas e Integrais
-
- Questão - Polinômio Grau 3 - Teorema do Valor Intermediário
por elisafrombrazil » Sáb Jan 21, 2017 10:41
- 4 Respostas
- 4437 Exibições
- Última mensagem por e8group

Qui Fev 02, 2017 23:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.