• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] duvida

[LIMITE] duvida

Mensagempor beel » Sáb Set 03, 2011 20:32

O limite é o seguinte:
f(x)=\lim_{\rightarrow0} [f(4 + h)- f(4)]/h

sendo f(x)=4x² + 3

sendo assim, f(4)=67.
Assim, o limite nao existiria, pelo fato de o numerador (67-0) - (67) e o denominador derem zero?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] duvida

Mensagempor LuizAquino » Dom Set 04, 2011 12:50

isanobile escreveu:sendo assim, f(4)=67.
Assim, o limite nao existiria, pelo fato de o numerador (67-0) - (67) e o denominador derem zero?

Não é isso. Lembre-se que o limite de uma indeterminação do tipo 0/0 pode sim existir. É o caso desse exercício.

Você deseja calcular o limite abaixo considerando que f(x) = 4x^2 + 3 :

\lim_{h\to 0} \frac{f(4+h) - f(4)}{h}

Veja que aplicando a função, esse limite é o mesmo que

\lim_{h\to 0} \frac{[4(4+h)^2 + 3] - (4\cdot 4^2 + 3)}{h}

Desenvolvendo o numerador, você obtém:

\lim_{h\to 0} \frac{4h^2 + 32h}{h}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] duvida

Mensagempor beel » Dom Set 04, 2011 13:40

Entendi o raciocínio, mas nao entendi o 32h . Meu resultado a partir de
\lim_{\rightarrow 0} [4(4+h)² + 3] -  4(4)²+3/h

foi :

\lim_{\rightarrow 0} (4h² + 6)/h

e como eu terminaria?Tentei fatorar esse ultimo resultado tirando as raizes por Baskara mas travei novamente.

Obs: desconsidere esse  que aparece ao quadrado, era para ser um "H", mas quando digitei o limite no editor de formulas apareceu isso.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] duvida

Mensagempor LuizAquino » Dom Set 04, 2011 15:17

isanobile escreveu:Entendi o raciocínio, mas nao entendi o 32h .

Veja que:
4(4+h)^2 = 4\left(16 + 8h + h^2\right) = 64 + 32h + 4h^2

isanobile escreveu:Meu resultado a partir de
\lim_{\rightarrow 0} [4(4+h)^2 + 3] - 4(4)^2+3/h

foi :

\lim_{\rightarrow 0} (4h^2 + 6)/h

Como ilustra a mensagem anterior, isso está incorreto. Reveja as suas contas.

isanobile escreveu:e como eu terminaria? Tentei fatorar esse ultimo resultado tirando as raizes por Baskara mas travei novamente.

Continuando do ponto em que parei na minha mensagem anterior, veja que no numerador você pode colocar um termo h em evidência.

isanobile escreveu:Obs: desconsidere esse  que aparece ao quadrado, era para ser um "H", mas quando digitei o limite no editor de formulas apareceu isso.

Isso apareceu pois você utilizou o atalho de teclado para digitar o quadrado. Isto é, você digitou "h²". O correto no ambiente LaTeX é você usar o comando h^2, o qual tem como resultado: h^2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] duvida

Mensagempor beel » Dom Set 04, 2011 15:30

Aaaa agora vi onde eu errei, tem que fazer o quadrado da soma, tava elevando o quadrado cada termo...erro beeeeesta, coisa de ensino fundamental haha.
Muito obrigada, consegui fazer, o limite deu 32, obrigada novamente.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.