• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas trigonométricas

Derivadas trigonométricas

Mensagempor vmouc » Sáb Jun 04, 2011 14:07

Bem,

Pessoal, acho que ja estou fazendo bagunça nas derivadas.Por gentileza me ajudem!!!

1)Prove usando as regras de seno e cosseno que a derivada de:

a)y= cotg x é y'=-cossec^2x

Minha tentativa (falida):

y= \frac{cos(x)}{sen(x)}

Aí tentei aplicar a regra do quociente:

\frac{(-sen x)(sen x) - (cosx)(cosx)}{sen^2x}

\frac{-sen^2x}{se^2x}-\frac{cos^2x}{sen^2x}\Rightarrow -1-cos^2x (\frac{1}{sen^2x})\Rightarrow-1-cos^2x (cossec^2x)

Ou seja, fiz uma bagunça! Alguem pode me ajudar por gentileza?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Derivadas trigonométricas

Mensagempor vmouc » Sáb Jun 04, 2011 14:25

Eu acho que errei na interpretação: olha por favor se agora está certo:

\frac{-[(sen^2x) + (cos^2x)]}{sen^2x}\Rightarrow \frac{-1}{sen^2x}\Rightarrow-cossec^2 x
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Derivadas trigonométricas

Mensagempor MarceloFantini » Sáb Jun 04, 2011 15:02

Agora está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.