• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida URGENTE

Duvida URGENTE

Mensagempor legendkiller2009 » Qua Jun 01, 2011 19:18

Gostava que me ajudassem pois nâo estou a conseguir resolver este problema de matemática.

É o seguinte:

tenho 3 rectas : y = exp(x) ; y = 1 - X ; x=1

e gostava de saber a região delimitada pelas rectas utilizando integrais.

Eu já tentei fazer mas encalho sempre nas intersecções das rectas.

Se alguem me ajudar fico muito agradecido.
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Duvida URGENTE

Mensagempor carlosalesouza » Qua Jun 01, 2011 19:37

Primeiro, falemos em linhas, não retas... pois e^x é uma curva...

Depois, lembremos que a área de uma curva é a soma dos retângulos com altura igual f(x) - g(x) e largura igual ao intervalo dividido pelo número de retângulos quando este número tende ao infinito, não é?

Então, veja que a altura dos retângulos é delimitada por y=e^x e y = 1 com interseção em x = 0, que será a primeira interseção... a outra interseção será em x=1, que é o outro delimitador da área...

Então, a área será dada por:

\\
A=\int_0^1[ e^x-1 ]dx\\
A=[ e^x-x ]_0^1\\
A=[ e^1-1 ]-[e^0-0]\\
A=[ e-1 ] - [1]\\
A=e-1-1\\
A=(e-2)u.a.

Correto?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Duvida URGENTE

Mensagempor LuizAquino » Qui Jun 02, 2011 14:55

A figura abaixo ilustra o exercício.
área-A.png
área-A.png (6.31 KiB) Exibido 2058 vezes


Para determinar a interseção entre f(x) = e^x e g(x) = 1 - x, você precisaria resolver a equação f(x) = g(x), ou seja, e^x = 1 - x . Acontece que não temos um meio analítico de determinar a solução dessa equação. Porém, não é difícil perceber que x = 0 é a solução. Ora, como f(0)=g(0)=1, temos que o ponto de interseção é (0, 1).

Por outro lado, temos as retas x = 1 e g(x) = 1 - x. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y = g(1) = 0. Portanto, o ponto de interseção é (1, 0).

Por fim, temos a reta x = 1 e a curva f(x) = e^x. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y = f(1) = e. Portanto, o ponto de interseção é (1, e).

Considerando essas informações, temos que:
A = \int_0^1 e^x - (1 - x)\,dx = \left[e^x - x + \frac{x^2}{2}\right]_0^1 = e - \frac{3}{2} u. a. (unidade de área).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida URGENTE

Mensagempor carlosalesouza » Qui Jun 02, 2011 18:35

Perdão... quando calculei, vi as funções incompletas... y= 1-X... tava tudo emendado, eu vi y = 1...

Luiz, meu caro Luiz... sempre tambando as minhas gafes... rs

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D