• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização

Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 15:41

Olá amigos,

Estou com um grande problema para resolução de uma atividade na qual precisarei apresentar amanhã na aula de cálculo.

O problema é o seguinte:

Encontre o ponto P na parábola y=x² que está mais próximo de (3,0) . Justifique sua resposta que o ponto que você encontrou é realmente o mais próximo.

Para resolver eu isolei x e estou trabalhando em termos de y, mais consigo chegar na resposta (1,1). Mas não acho uma maneira de provar essa reposta.

Preciso de ajuda!!!


Elbert
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Ter Mai 31, 2011 17:23

Em exercícios de otimização você precisa primeiro obter a função que deseja otimizar. Em boa parte dos exercícios a função não é fornecida diretamente.

Pois bem, perceba que todos os pontos sobre a parábola y = x² têm o formato (k, k²), para algum real k.

Agora, basta armar a função que fornece a distância desse ponto ao ponto (3, 0).

Vale lembrar que dos conhecimentos de Geometria Analítica sabemos que a distância do ponto P = (x0, y0) à Q = (x1, y1) é dada por: d(P,\,Q) = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 17:48

Boa tarde Luiz,


Eu tenho a seguinte dúvida:

elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 17:50

consequentemente a imagem em y= 1² = 1

??????

seria um teste da segunda derivada???
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Ter Mai 31, 2011 18:08

D² = (x - 3)² +(x²)²
f'(x) = 2(x-3) + 2(x²).2x
f(x)' = 2x - 6 + 4x³
então o ponto que zera a função é 1 mas como consigo provar isso?

Ora, se você quer comprovar que x = c é raiz da função f(x), então basta você exibir que f(c) = 0. Mas, se você quer explicar como obteve que x = c é uma raiz, aí é outra história. No caso desse exercício, como temos uma equação polinomial, você poderia usar o Teorema das Raízes Racionais.

Vale lembrar que para concluir que (1, f(1)) é o ponto de mínimo você ainda deve calcular a segunda derivada e verificar se f''(1) > 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}