• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros inteiros

Numeros inteiros

Mensagempor Raphael Feitas10 » Qua Jan 05, 2011 00:16

Professor me tira essa duvida por favor
A soma de três mútiplos de 4 com quatro mútiplos de 3 e igual a 144.
Calcule o primeiro mútiplo desses numeros.

eu cheguei ate aqui depois ñ conseguei resolver mas
x+x+4+x+8+x+x+3+x+6+x+9=144


a reposta é 12
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros inteiros

Mensagempor PedroSantos » Qua Jan 05, 2011 07:45

Existe um número x que é múltiplo comum de 3 e 4 de tal forma que

2(x+2x+3x)=144 (multiplica-se por dois, porque se pede a soma dos multiplos de 3 e 4)

12x=144

x=12

Intuitivamente bastava encontrar o M.M.C entre 3 e 4.

Dificil é:
A soma de três multiplos comuns entre 3 e 4 é igual a 108,qual é o menor de entre esses três?
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Numeros inteiros

Mensagempor Raphael Feitas10 » Qua Jan 05, 2011 12:54

Ver se ta certo professor
2(x+2x+3x)=108
12x=108
x=108/12
x=9
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros inteiros

Mensagempor PedroSantos » Qua Jan 05, 2011 19:49

Se x=9, então os outros multiplos serão 18 e 27. Todos eles são multiplos de 3, mas nenhum é multiplo de 4.
Julgo que a resolução deste tipo de problemas, passa por encontrar o MMC entre os dois números.Neste caso é o 12.
Seja x um número inteiro positivo, 12x será sempre um multiplo comum de 3 e 4.

Assim:

12x+12(x+1)+12(x+2)=108 (só é pedido a soma dos múltiplos comun aos dois)

12x+12x+12+12x+24=108

36x=108-36

x=\frac{72}{36}

x=2

Se x=2, então os três múltiplos são 24,36 e 48. O menor é o 24.
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}