• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Modern Engineering Mathematics - series e transformacoes

Modern Engineering Mathematics - series e transformacoes

Mensagempor ratamaria » Sáb Nov 13, 2010 10:35

oi
eu estudo engenharia eletrônica na suécia
to precisando de ajuda
alguem tem nocao como resolver estas questoes? principalmente a 3....

http://apachepersonal.miun.se/~egmpor/S ... nd-in3.pdf
ratamaria
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 13, 2010 10:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Modern Engineering Mathematics - series e transformacoes

Mensagempor luispereira » Qui Dez 23, 2010 22:26

Irei resolver a 3 que acho que é a que você tem mais dificuldade.Primeiramente, para resolver esta equação é necessário tem estudado um bom livro de análise de Fourier, porque é pela soma deste que resolverei.Voltando a equação, é sabido que esta demostra o movimento de uma corda vibrante com extremidades fixas
( não demonstrarei o meio de chegar a ela, pois é muito demorado e neste espaço não cabe). Logo:

u(x,t)=\sum^\infty_{n=1}[a_nsin(n\pi)cos(nt)+b_nsin(n\pi)sin(nt)]
onde a_n e [/tex] b_n[/tex] são coeficientes da série de Fourier de uma variável. Dado o exercício, o 1ª coeficiente tem duas funções, contínuas, e satisfeitas por:

a_n=\frac{2}{\pi}[\int^\frac{\pi}{2}_0xsin(nx)dx+\int^\pi_\frac{\pi}{2}(\pi-x)sin(nx)dx]

Resolvendo-a, você chegará no sequinte resultado: a_n=\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi

O calculo do 2º coeficiente é dado por: \frac{2}{n\pi}\int^\pi_0(-sinx)sin(nx)dx. Porém, esta última integral é nula, ou seja: b_n=0
Daí segue;

u(x,t)=\sum^\infty_{n=1}{[\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi]sin(n\pi)cos(nt)}, onde percebe-se que há inúmeras respostas.

obs: Se essa não for a resposta, diga-me que tentarei refazê-la.
luispereira
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Dez 23, 2010 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.