Irei resolver a 3 que acho que é a que você tem mais dificuldade.Primeiramente, para resolver esta equação é necessário tem estudado um bom livro de análise de Fourier, porque é pela soma deste que resolverei.Voltando a equação, é sabido que esta demostra o movimento de uma corda vibrante com extremidades fixas
( não demonstrarei o meio de chegar a ela, pois é muito demorado e neste espaço não cabe). Logo:
onde

e [/tex] b_n[/tex] são coeficientes da série de Fourier de uma variável. Dado o exercício, o 1ª coeficiente tem duas funções, contínuas, e satisfeitas por:
![a_n=\frac{2}{\pi}[\int^\frac{\pi}{2}_0xsin(nx)dx+\int^\pi_\frac{\pi}{2}(\pi-x)sin(nx)dx] a_n=\frac{2}{\pi}[\int^\frac{\pi}{2}_0xsin(nx)dx+\int^\pi_\frac{\pi}{2}(\pi-x)sin(nx)dx]](/latexrender/pictures/43041cccf120632ed5bde8a330be64a7.png)
Resolvendo-a, você chegará no sequinte resultado:
![a_n=\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi a_n=\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi](/latexrender/pictures/40a85becc629c737ebcb12a964f531fe.png)
O calculo do 2º coeficiente é dado por:

. Porém, esta última integral é nula, ou seja:

Daí segue;
![u(x,t)=\sum^\infty_{n=1}{[\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi]sin(n\pi)cos(nt)} u(x,t)=\sum^\infty_{n=1}{[\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi]sin(n\pi)cos(nt)}](/latexrender/pictures/88c4d34f570ca20785a34d8c325d69c5.png)
, onde percebe-se que há inúmeras respostas.
obs: Se essa não for a resposta, diga-me que tentarei refazê-la.