• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Modern Engineering Mathematics - series e transformacoes

Modern Engineering Mathematics - series e transformacoes

Mensagempor ratamaria » Sáb Nov 13, 2010 10:35

oi
eu estudo engenharia eletrônica na suécia
to precisando de ajuda
alguem tem nocao como resolver estas questoes? principalmente a 3....

http://apachepersonal.miun.se/~egmpor/S ... nd-in3.pdf
ratamaria
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 13, 2010 10:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Modern Engineering Mathematics - series e transformacoes

Mensagempor luispereira » Qui Dez 23, 2010 22:26

Irei resolver a 3 que acho que é a que você tem mais dificuldade.Primeiramente, para resolver esta equação é necessário tem estudado um bom livro de análise de Fourier, porque é pela soma deste que resolverei.Voltando a equação, é sabido que esta demostra o movimento de uma corda vibrante com extremidades fixas
( não demonstrarei o meio de chegar a ela, pois é muito demorado e neste espaço não cabe). Logo:

u(x,t)=\sum^\infty_{n=1}[a_nsin(n\pi)cos(nt)+b_nsin(n\pi)sin(nt)]
onde a_n e [/tex] b_n[/tex] são coeficientes da série de Fourier de uma variável. Dado o exercício, o 1ª coeficiente tem duas funções, contínuas, e satisfeitas por:

a_n=\frac{2}{\pi}[\int^\frac{\pi}{2}_0xsin(nx)dx+\int^\pi_\frac{\pi}{2}(\pi-x)sin(nx)dx]

Resolvendo-a, você chegará no sequinte resultado: a_n=\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi

O calculo do 2º coeficiente é dado por: \frac{2}{n\pi}\int^\pi_0(-sinx)sin(nx)dx. Porém, esta última integral é nula, ou seja: b_n=0
Daí segue;

u(x,t)=\sum^\infty_{n=1}{[\frac{4}{n^2\pi}sin(\frac{n\pi}{2})+\frac{2}{n}[(-1)^n-cos(\frac{n\pi}{2})]+\pi]sin(n\pi)cos(nt)}, onde percebe-se que há inúmeras respostas.

obs: Se essa não for a resposta, diga-me que tentarei refazê-la.
luispereira
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Dez 23, 2010 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.