• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITES

LIMITES

Mensagempor Arlan » Sex Set 10, 2010 14:42

Estou cursando o segundo período de Engenharia Civil e pagando a disciplina Cálculo I. Estou resolvendo as questões do Livro "O Cálculo com Geometria Analítica" de Louis Leithold.

Estou encontrando dificuldades na solução desta questão...

\lim_{h\rightarrow 0} \frac{\sqrt[3]{h+1}-1}{h}

Adotei as seguintes estratégias de resolução:

( i ) coloquei o -1 do numerador dentro da raíz cúbica
(ii) somei 1 e subtrai -1 ao denominador (h+1)-1

\lim_{h\rightarrow0}\frac{\sqrt[3]{h + 1} - \sqrt[3]{1}}\left(\sqrt[3]{h + 1}\right){}^{3} - \left(\sqrt[3]{1} \right){}^{3}
Arlan
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 09, 2010 21:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelando em Engenharia
Andamento: cursando

Re: LIMITES

Mensagempor Marcampucio » Sex Set 10, 2010 16:12

h+1=x^3\,\,\to\,\,h=x^3-1


\\\lim_{h\to0}\frac{\sqrt[3]{h+1}-1}{h}=\lim_{x\to1}\frac{x-1}{x^3-1} =\lim_{x\to1}\frac{x-1}{(x-1)(x^2+1+x)}\\\\\\\lim_{x\to1}\frac{1}{x^2+1+x} =\frac{1}{3}
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.