• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITES

LIMITES

Mensagempor Arlan » Sex Set 10, 2010 14:42

Estou cursando o segundo período de Engenharia Civil e pagando a disciplina Cálculo I. Estou resolvendo as questões do Livro "O Cálculo com Geometria Analítica" de Louis Leithold.

Estou encontrando dificuldades na solução desta questão...

\lim_{h\rightarrow 0} \frac{\sqrt[3]{h+1}-1}{h}

Adotei as seguintes estratégias de resolução:

( i ) coloquei o -1 do numerador dentro da raíz cúbica
(ii) somei 1 e subtrai -1 ao denominador (h+1)-1

\lim_{h\rightarrow0}\frac{\sqrt[3]{h + 1} - \sqrt[3]{1}}\left(\sqrt[3]{h + 1}\right){}^{3} - \left(\sqrt[3]{1} \right){}^{3}
Arlan
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 09, 2010 21:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelando em Engenharia
Andamento: cursando

Re: LIMITES

Mensagempor Marcampucio » Sex Set 10, 2010 16:12

h+1=x^3\,\,\to\,\,h=x^3-1


\\\lim_{h\to0}\frac{\sqrt[3]{h+1}-1}{h}=\lim_{x\to1}\frac{x-1}{x^3-1} =\lim_{x\to1}\frac{x-1}{(x-1)(x^2+1+x)}\\\\\\\lim_{x\to1}\frac{1}{x^2+1+x} =\frac{1}{3}
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59