• Anúncio Global
    Respostas
    Exibições
    Última mensagem

elasticidade de substituição

elasticidade de substituição

Mensagempor jmario » Ter Mai 25, 2010 10:00

Gostaria de saber como se resolve essa equação

U(x1,x2)= \left[\alpha1{x1}^{\rho}.a2{x2}^{\rho} \right]^{\frac{1}{p}}

Deriavada - Taxa marginal de substituição (x,y) = \frac{\alpha1}{\alpha2}.\left(\frac{x1}{x2} \right)^{\rho-1}


Fica na seguinte equação - d=derivada
\frac{d \frac{x2}{x1}}{d \left[\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} \right]}. \frac{\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} }{\frac{x2}{x1}}

Eu quero saber porque se chega nessa equação
\frac{1}{\left(\frac{\alpha1}{\alpha2} \right)(1-\rho) \left(\frac{x1}{x2}\right)^{\rho}}.\frac{\alpha1}{\alpha2}.\left(\frac{x1}{x2} \right)^{\rho} = \frac{1}{1-\rho}

Eu queria saber porque apareceu o (1-\rho) e o \left(\frac{x1}{x2} \right) fica só elevado a \rho eo -1 porque some.
Tem o \frac{}{\frac{x2}{x1}} que some também não sei porque?

Alguém pode resolver essa equação? Eu não consigo
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: elasticidade de substituição

Mensagempor daniellguitar » Sex Jun 04, 2010 00:14

Jmario não é muito complicado, basta você dividir o problema em duas etapas, uma para o numerado e outra para o denominador. Depois faça as derivadas totais e substitua os valores para o operador dx ou dy, utilize os que saem da função fxdx+fydy=0, que você consegue. add no msn se quiser: daniell.sancho@hotmail.com
daniellguitar
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 04, 2010 00:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}