• Anúncio Global
    Respostas
    Exibições
    Última mensagem

elasticidade de substituição

elasticidade de substituição

Mensagempor jmario » Ter Mai 25, 2010 10:00

Gostaria de saber como se resolve essa equação

U(x1,x2)= \left[\alpha1{x1}^{\rho}.a2{x2}^{\rho} \right]^{\frac{1}{p}}

Deriavada - Taxa marginal de substituição (x,y) = \frac{\alpha1}{\alpha2}.\left(\frac{x1}{x2} \right)^{\rho-1}


Fica na seguinte equação - d=derivada
\frac{d \frac{x2}{x1}}{d \left[\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} \right]}. \frac{\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} }{\frac{x2}{x1}}

Eu quero saber porque se chega nessa equação
\frac{1}{\left(\frac{\alpha1}{\alpha2} \right)(1-\rho) \left(\frac{x1}{x2}\right)^{\rho}}.\frac{\alpha1}{\alpha2}.\left(\frac{x1}{x2} \right)^{\rho} = \frac{1}{1-\rho}

Eu queria saber porque apareceu o (1-\rho) e o \left(\frac{x1}{x2} \right) fica só elevado a \rho eo -1 porque some.
Tem o \frac{}{\frac{x2}{x1}} que some também não sei porque?

Alguém pode resolver essa equação? Eu não consigo
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: elasticidade de substituição

Mensagempor daniellguitar » Sex Jun 04, 2010 00:14

Jmario não é muito complicado, basta você dividir o problema em duas etapas, uma para o numerado e outra para o denominador. Depois faça as derivadas totais e substitua os valores para o operador dx ou dy, utilize os que saem da função fxdx+fydy=0, que você consegue. add no msn se quiser: daniell.sancho@hotmail.com
daniellguitar
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 04, 2010 00:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.