por jmario » Ter Mai 25, 2010 10:00
Gostaria de saber como se resolve essa equação
U
![(x1,x2)= \left[\alpha1{x1}^{\rho}.a2{x2}^{\rho} \right]^{\frac{1}{p}} (x1,x2)= \left[\alpha1{x1}^{\rho}.a2{x2}^{\rho} \right]^{\frac{1}{p}}](/latexrender/pictures/b9ea18b2fad16d6b636d6f2e341139aa.png)
Deriavada - Taxa marginal de substituição (x,y) =

Fica na seguinte equação - d=derivada
![\frac{d \frac{x2}{x1}}{d \left[\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} \right]}. \frac{\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} }{\frac{x2}{x1}} \frac{d \frac{x2}{x1}}{d \left[\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} \right]}. \frac{\frac{\alpha1}{\alpha2}\left(\frac{x1}{x2}\right)^{\rho-1} }{\frac{x2}{x1}}](/latexrender/pictures/71b00d17f8a412c9e01fb76dc6d70f75.png)
Eu quero saber porque se chega nessa equação

Eu queria saber porque apareceu o

e o

fica só elevado a

eo

porque some.
Tem o

que some também não sei porque?
Alguém pode resolver essa equação? Eu não consigo
-
jmario
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Qui Abr 15, 2010 12:23
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: economia
- Andamento: formado
por daniellguitar » Sex Jun 04, 2010 00:14
Jmario não é muito complicado, basta você dividir o problema em duas etapas, uma para o numerado e outra para o denominador. Depois faça as derivadas totais e substitua os valores para o operador dx ou dy, utilize os que saem da função fxdx+fydy=0, que você consegue. add no msn se quiser:
daniell.sancho@hotmail.com
-
daniellguitar
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Jun 04, 2010 00:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Substituição
por LuY12 » Sáb Fev 28, 2009 16:20
- 1 Respostas
- 2052 Exibições
- Última mensagem por Adriano Tavares

Qua Mar 09, 2011 02:37
Cálculo: Limites, Derivadas e Integrais
-
- integrais por substituiçao
por rita becher » Seg Mai 16, 2011 14:33
- 1 Respostas
- 1502 Exibições
- Última mensagem por DanielFerreira

Dom Mar 04, 2012 10:35
Funções
-
- [Integral] Substituição
por Aliocha Karamazov » Qui Fev 23, 2012 23:57
- 2 Respostas
- 2466 Exibições
- Última mensagem por MarceloFantini

Sex Fev 24, 2012 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral (substituição)
por kika_sanches » Sex Mar 23, 2012 14:42
- 4 Respostas
- 3146 Exibições
- Última mensagem por kika_sanches

Sex Mar 23, 2012 15:35
Cálculo: Limites, Derivadas e Integrais
-
- substituição trigonometricax
por gabrielnandi » Qua Mai 30, 2012 18:45
- 1 Respostas
- 1068 Exibições
- Última mensagem por LuizAquino

Qui Mai 31, 2012 10:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.