por Napiresilva » Sáb Out 15, 2016 22:21
Ana está correndo a velocidade constante de 0,6 m/s e passa embaixo de uma lâmpada em um poste situada a 6 m do solo. Sabendo que Ana tem 1,5 m de altura, encontre a taxa com que o comprimento de sua sombra está aumentando, em relação ao tempo, quando ela está a uma distância de 5 m depois do poste e se afastando do mesmo.
Alguém me ajuda a formular o desenho dessa questão?

-
Napiresilva
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Out 10, 2016 15:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Produção Civil
- Andamento: cursando
por adauto martins » Ter Out 18, 2016 10:05
consideremos os trian.pote-garota-sombra...logo teremos 2 triang.semelhantes e consideremos x o comprim. da sombra da garota...logo,por semelhança teremos:

,onde

altura da garota...entao p/essa situaçao,teremos:

...

...entao:

...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Taxas Relacionadas]
por Ana_Rodrigues » Seg Nov 14, 2011 10:02
- 2 Respostas
- 4589 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 12:19
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:48
- 0 Respostas
- 1459 Exibições
- Última mensagem por RonnieAlmeida

Qui Mai 22, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:58
- 1 Respostas
- 2709 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 07:59
Cálculo: Limites, Derivadas e Integrais
-
- Taxas relacionadas
por Lorijuca » Qui Mai 29, 2014 22:23
- 0 Respostas
- 2952 Exibições
- Última mensagem por Lorijuca

Qui Mai 29, 2014 22:23
Cálculo: Limites, Derivadas e Integrais
-
- TAXAS RELACIONADAS
por Daniela[ » Sáb Jul 05, 2014 15:15
- 3 Respostas
- 6967 Exibições
- Última mensagem por young_jedi

Dom Jul 06, 2014 14:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.