por Reh » Qua Jul 20, 2016 18:52
Problema: Determine o coeficiente angular da curva

no ponto (4; 2) e a equação
da reta tangente à curva nesse ponto.
Estou com dificuldade em relação a fórmula para calcular, pois quando faço o gráfico e uso dois pontos, por exemplo, p1(4,2) e p2(9,3), para calcular o coeficiente angular

encontro algo que não é o coeficiente angular e da mesma forma para outros pontos do gráfico. Existe uma fórmula para o cálculo?
Desde já, grato pela contribuição.

-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
por Daniel Bosi » Qua Jul 20, 2016 21:34
Olá Reh.
Você já aprendeu derivada? A forma de encontrar o coeficiente angular da reta tangente ao ponto da função é fazendo a derivada da função e substituindo o x do ponto (4,2) nessa derivada:
![f(x) = \sqrt[]{x} f(x) = \sqrt[]{x}](/latexrender/pictures/db121f82bd932015c370b06f13645461.png)
Derivada:
![f'(x) = \frac{1}{2\times\sqrt[]{x}} f'(x) = \frac{1}{2\times\sqrt[]{x}}](/latexrender/pictures/ee1613992b11cde7766c340421922857.png)
Substituindo a coordenada x do ponto (4,2) significa substituir o número 4 nessa derivada, encontrando o coeficiente angular da reta tangente

.
Portanto, a equação da reta tangente ao ponto (4,2) da função supracitada deve ser da forma

.
Ainda não conhecemos essa constante c, mas sabemos que a reta passa pelo ponto (4,2). Portanto, para o valor de x igual a 4, o y deve ser 2, assim:

Isso significa que:



Portanto a equação da reta tangente à função
![f(x) = \sqrt[]{x} f(x) = \sqrt[]{x}](/latexrender/pictures/db121f82bd932015c370b06f13645461.png)
no ponto (4,2) é

-
Daniel Bosi
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Mai 16, 2016 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Reh » Qua Jul 20, 2016 23:58
Resolução perfeita, porém ainda não aprendi derivada. O meu professor disponibilizou essa resolução, sem a aplicação de derivadas, pois a questão é referente a prova de Limites. Detalhe, ele usa uma "fórmula" para encontrar o coeficiente angular.
![m = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} * {} \frac{\sqrt[]{4 + h} + \sqrt[]{4}}{{\sqrt[]{4+h} + \sqrt[]{4}}{h}} = \lim_{h\rightarrow0} \frac{{4 + h} - {4}}{h\left(\sqrt[]{4+h}+2 \right)} m = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} * {} \frac{\sqrt[]{4 + h} + \sqrt[]{4}}{{\sqrt[]{4+h} + \sqrt[]{4}}{h}} = \lim_{h\rightarrow0} \frac{{4 + h} - {4}}{h\left(\sqrt[]{4+h}+2 \right)}](/latexrender/pictures/9bb5719d38ff33fbf9b221bed03d5d6a.png)
![= \frac{h}{h\left( \sqrt[]{4+h}+2\right)} = \lim_{h\rightarrow0} \frac{1}{\sqrt[]{4+h}+2} \Rightarrow m = \frac{1}{4} = \frac{h}{h\left( \sqrt[]{4+h}+2\right)} = \lim_{h\rightarrow0} \frac{1}{\sqrt[]{4+h}+2} \Rightarrow m = \frac{1}{4}](/latexrender/pictures/9f5005f922e261d0212029de4624f971.png)
Acredito que a fórmula seja essa
![\lim_{h\rightarrow0} \frac{\sqrt[]{Xo+h}-\sqrt[]{Xo}}{h} \lim_{h\rightarrow0} \frac{\sqrt[]{Xo+h}-\sqrt[]{Xo}}{h}](/latexrender/pictures/441cc3ad2f73807653a47b604dc390bb.png)
aplicado ao ponto (4,2) onde Xo seria o 4, assim sendo substituído na fórmula para calcular o coeficiente angular. Faz sentido?
Excelente dica, obrigado.
-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
por Daniel Bosi » Qui Jul 21, 2016 09:23
Bom dia, Reh.
Parece que o seu professor está trabalhando com a Derivada por Limite. Dê uma olhada no link abaixo onde é mostrada a fórmula da Derivada por Limite com exercícios resolvidos:
http://www.mtm.ufsc.br/~azeredo/calculo ... efDer.html
-
Daniel Bosi
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Mai 16, 2016 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Reh » Sex Jul 22, 2016 08:58
Sim, realmente parece ser isso, ótimo site com conteúdos de cálculo, ajudou muito.
Obrigado!

-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Coeficiente angular da tangente] Duvidas no resultado
por fabriel » Dom Mai 05, 2013 15:52
- 1 Respostas
- 1319 Exibições
- Última mensagem por young_jedi

Dom Mai 05, 2013 19:24
Cálculo: Limites, Derivadas e Integrais
-
- [drv implícita]coeficiente angular da reta normal ao gráfico
por marcosmuscul » Qui Abr 04, 2013 14:54
- 2 Respostas
- 1675 Exibições
- Última mensagem por marcosmuscul

Qui Abr 04, 2013 17:40
Cálculo: Limites, Derivadas e Integrais
-
- coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:02
- 1 Respostas
- 1832 Exibições
- Última mensagem por Molina

Seg Mai 16, 2011 22:32
Geometria Analítica
-
- Coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:06
- 6 Respostas
- 4220 Exibições
- Última mensagem por alexsandrob13

Ter Mai 17, 2011 20:05
Geometria Analítica
-
- Coeficiente Angular e Taxa de Variação
por Fabio Cabral » Qua Jun 29, 2011 11:43
- 1 Respostas
- 1794 Exibições
- Última mensagem por Claudin

Qua Jun 29, 2011 11:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.