por Reh » Qua Jul 20, 2016 18:52
Problema: Determine o coeficiente angular da curva

no ponto (4; 2) e a equação
da reta tangente à curva nesse ponto.
Estou com dificuldade em relação a fórmula para calcular, pois quando faço o gráfico e uso dois pontos, por exemplo, p1(4,2) e p2(9,3), para calcular o coeficiente angular

encontro algo que não é o coeficiente angular e da mesma forma para outros pontos do gráfico. Existe uma fórmula para o cálculo?
Desde já, grato pela contribuição.

-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
por Daniel Bosi » Qua Jul 20, 2016 21:34
Olá Reh.
Você já aprendeu derivada? A forma de encontrar o coeficiente angular da reta tangente ao ponto da função é fazendo a derivada da função e substituindo o x do ponto (4,2) nessa derivada:
![f(x) = \sqrt[]{x} f(x) = \sqrt[]{x}](/latexrender/pictures/db121f82bd932015c370b06f13645461.png)
Derivada:
![f'(x) = \frac{1}{2\times\sqrt[]{x}} f'(x) = \frac{1}{2\times\sqrt[]{x}}](/latexrender/pictures/ee1613992b11cde7766c340421922857.png)
Substituindo a coordenada x do ponto (4,2) significa substituir o número 4 nessa derivada, encontrando o coeficiente angular da reta tangente

.
Portanto, a equação da reta tangente ao ponto (4,2) da função supracitada deve ser da forma

.
Ainda não conhecemos essa constante c, mas sabemos que a reta passa pelo ponto (4,2). Portanto, para o valor de x igual a 4, o y deve ser 2, assim:

Isso significa que:



Portanto a equação da reta tangente à função
![f(x) = \sqrt[]{x} f(x) = \sqrt[]{x}](/latexrender/pictures/db121f82bd932015c370b06f13645461.png)
no ponto (4,2) é

-
Daniel Bosi
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Mai 16, 2016 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Reh » Qua Jul 20, 2016 23:58
Resolução perfeita, porém ainda não aprendi derivada. O meu professor disponibilizou essa resolução, sem a aplicação de derivadas, pois a questão é referente a prova de Limites. Detalhe, ele usa uma "fórmula" para encontrar o coeficiente angular.
![m = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} * {} \frac{\sqrt[]{4 + h} + \sqrt[]{4}}{{\sqrt[]{4+h} + \sqrt[]{4}}{h}} = \lim_{h\rightarrow0} \frac{{4 + h} - {4}}{h\left(\sqrt[]{4+h}+2 \right)} m = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} = \lim_{h\rightarrow0} \frac{\sqrt[]{4 + h} - \sqrt[]{4}}{h} * {} \frac{\sqrt[]{4 + h} + \sqrt[]{4}}{{\sqrt[]{4+h} + \sqrt[]{4}}{h}} = \lim_{h\rightarrow0} \frac{{4 + h} - {4}}{h\left(\sqrt[]{4+h}+2 \right)}](/latexrender/pictures/9bb5719d38ff33fbf9b221bed03d5d6a.png)
![= \frac{h}{h\left( \sqrt[]{4+h}+2\right)} = \lim_{h\rightarrow0} \frac{1}{\sqrt[]{4+h}+2} \Rightarrow m = \frac{1}{4} = \frac{h}{h\left( \sqrt[]{4+h}+2\right)} = \lim_{h\rightarrow0} \frac{1}{\sqrt[]{4+h}+2} \Rightarrow m = \frac{1}{4}](/latexrender/pictures/9f5005f922e261d0212029de4624f971.png)
Acredito que a fórmula seja essa
![\lim_{h\rightarrow0} \frac{\sqrt[]{Xo+h}-\sqrt[]{Xo}}{h} \lim_{h\rightarrow0} \frac{\sqrt[]{Xo+h}-\sqrt[]{Xo}}{h}](/latexrender/pictures/441cc3ad2f73807653a47b604dc390bb.png)
aplicado ao ponto (4,2) onde Xo seria o 4, assim sendo substituído na fórmula para calcular o coeficiente angular. Faz sentido?
Excelente dica, obrigado.
-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
por Daniel Bosi » Qui Jul 21, 2016 09:23
Bom dia, Reh.
Parece que o seu professor está trabalhando com a Derivada por Limite. Dê uma olhada no link abaixo onde é mostrada a fórmula da Derivada por Limite com exercícios resolvidos:
http://www.mtm.ufsc.br/~azeredo/calculo ... efDer.html
-
Daniel Bosi
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Mai 16, 2016 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Reh » Sex Jul 22, 2016 08:58
Sim, realmente parece ser isso, ótimo site com conteúdos de cálculo, ajudou muito.
Obrigado!

-
Reh
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jul 20, 2016 13:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: COMPUTAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Coeficiente angular da tangente] Duvidas no resultado
por fabriel » Dom Mai 05, 2013 15:52
- 1 Respostas
- 1320 Exibições
- Última mensagem por young_jedi

Dom Mai 05, 2013 19:24
Cálculo: Limites, Derivadas e Integrais
-
- [drv implícita]coeficiente angular da reta normal ao gráfico
por marcosmuscul » Qui Abr 04, 2013 14:54
- 2 Respostas
- 1675 Exibições
- Última mensagem por marcosmuscul

Qui Abr 04, 2013 17:40
Cálculo: Limites, Derivadas e Integrais
-
- coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:02
- 1 Respostas
- 1833 Exibições
- Última mensagem por Molina

Seg Mai 16, 2011 22:32
Geometria Analítica
-
- Coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:06
- 6 Respostas
- 4224 Exibições
- Última mensagem por alexsandrob13

Ter Mai 17, 2011 20:05
Geometria Analítica
-
- Coeficiente Angular e Taxa de Variação
por Fabio Cabral » Qua Jun 29, 2011 11:43
- 1 Respostas
- 1794 Exibições
- Última mensagem por Claudin

Qua Jun 29, 2011 11:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.