por Whitesttax » Ter Abr 26, 2016 17:18
Boa tarde.
Não estou conseguindo resolver o seguinte problema:
Um reservatório de areia tem o formato de uma pirâmide invertida de base quadrada. A taxa de vazão da areia deste reservatório diminui a uma velocidade de 40pi cm^3/min.
Esta areia forma no chão um monte cônico. O volume total de areia no reservatório era 243pi cm^3. Determine a velocidade com que aumenta a altura do cone quando um terço da areia já caiu do reservatório. Sabendo que neste instante a altura do monte é 3cm e o raio aumenta uma taxa de 0,3cm/min.
O que já tentei fazer foi aplicar a fórmula do volume do cone, que se estou certo é V = pi*r^2*h / 3. Aí derivei para descobrir a altura mas está dando um resultado negativo, e bem errado (a resposta certa é 1.28cm/min)
Um ponto que talvez errei foi usar a taxa de variação do volume da pirâmide na conta debaixo sem mudar nada, não sei o que teria que mudar... O raio eu consegui aplicando a fórmula do volume também, só que sem derivar.
Mais ou menos assim...

Obrigado!
-
Whitesttax
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 16, 2015 23:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ciências da computação
- Andamento: cursando
por adauto martins » Sáb Mai 07, 2016 21:21
encontrei um valor prox. ao valor da resposta,vamos á soluçao:
1)

,pois os volumes serao os mesmos...


...
2)

...
substituindo o resultado na prim.relaçao teremos:
![{h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3}) {h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3})](/latexrender/pictures/5164c98cad3d68ded116c952ac82c70d.png)
...

,osinal negativo é pq a areia esta caindo,questao de referencial...em valor absoluto é o calculado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Mai 08, 2016 00:15
caro Whitesttax e colegas do site,
a resoluçao apresentada por mim do exercicio esta incorreta,pois nao levei em consideraçao a açao da gravidade sobre a areia q. cai da piramide...entao em ocasiao oportuna irei apresenta uma soluçao correta,no mais obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Mai 11, 2016 12:21
vamos considerar a areia q. escoa fazendo o cone,dessa forma podemos eliminar o fator da gravidade q. atua na areia da piramide,entao:
a vazao da areia da piramide sera a mesma q. forma o cone,pois o tempo de esoamento da areia da piramide,sera o mesmo da formaçao do cone,logo:


(aqui regra da cadeia)1)

...temos q.:

,p/ o instante pedido teremos:
![(243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9 (243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9](/latexrender/pictures/b05faff4df253408ff28932842ef4ef0.png)
...

...
voltando a 1º eq.

...bom é isso,obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada como Taxa de Variação
por Ronaldobb » Sex Set 21, 2012 20:29
- 3 Respostas
- 2113 Exibições
- Última mensagem por MarceloFantini

Sáb Set 22, 2012 00:05
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de variação
por Aliocha Karamazov » Sáb Nov 26, 2011 18:40
- 3 Respostas
- 7880 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 01:57
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de Variação
por Vanny » Dom Set 30, 2012 20:58
- 0 Respostas
- 3023 Exibições
- Última mensagem por Vanny

Dom Set 30, 2012 20:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] - Taxa de Variação
por Jeks_Osodrac » Ter Jul 30, 2013 19:19
- 3 Respostas
- 3098 Exibições
- Última mensagem por Russman

Qua Jul 31, 2013 18:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Taxa de variação - velocidade
por emanes » Qua Out 17, 2012 11:10
- 1 Respostas
- 3832 Exibições
- Última mensagem por young_jedi

Qua Out 17, 2012 11:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.