por uchihacx » Qui Dez 17, 2015 00:23

(x^k - a^k ) = 0
-
uchihacx
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Dez 17, 2015 00:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: cursando
por e8group » Sex Dez 18, 2015 22:46
Se ,

é fácil verificar o resultado . No caso geral , em que k é um natural qualquer

,fatore x^k - a^k ( divida o polinômio x^k - a^k por x-a ) . Feito isto , vamos poder escrever x^k - a^k como (x-a) q(x) , onde q(x) é um polinômio de grau k-1 . Em seguida ,note o seguinte , ao trabalharmos com x próximo de a , podemos majorar |x| (e.g . por 1 + |a| ) , e consequentemente teremos |q(x)| < M (p algum M > 0 ) . Dai vem :
|x^k - a^k| = |x-a| |q(x)| < M |x-a|
O segundo membro da desigualdade acima pode ficar arbitrariamente pequeno o que estabilizara o resultado .
Note que neste fórum tal questão já foi resolvida , onde há uma discussão mais detalhada .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] como essa divisão foi simplificada?
por GandalfOAzul » Sáb Set 14, 2019 01:21
- 5 Respostas
- 10145 Exibições
- Última mensagem por GandalfOAzul

Qua Set 18, 2019 12:01
Cálculo: Limites, Derivadas e Integrais
-
- Provar - Limites
por Cleyson007 » Sáb Abr 28, 2012 17:11
- 1 Respostas
- 1181 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 15:42
Cálculo: Limites, Derivadas e Integrais
-
- Limite Notável-Como provar?
por joaofonseca » Dom Out 30, 2011 20:19
- 4 Respostas
- 3828 Exibições
- Última mensagem por joaofonseca

Ter Nov 01, 2011 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Funções impares- como provar
por Thayna Santos » Seg Mar 16, 2015 12:10
- 1 Respostas
- 1792 Exibições
- Última mensagem por adauto martins

Seg Mar 16, 2015 15:41
Funções
-
- [limites] provar que existe o limite
por heric » Qui Out 13, 2011 14:36
- 4 Respostas
- 3272 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 11:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.