por starlord » Sáb Ago 23, 2014 19:30
Olá, queria ajuda pra calcular esse limite cabeludo que veio na minha primeira lista de cálculo hehe em anexo a foto do limite.
- Anexos
-

-
starlord
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Ago 23, 2014 19:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
por adauto martins » Qui Out 23, 2014 18:07

,pois tg1

...logo:
L=

L=
![\lim_{x\rightarrow3}(x+3)(x-3)cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)) \lim_{x\rightarrow3}(x+3)(x-3)cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3))](/latexrender/pictures/cd6eafe84e0bd119967cc307f762eb68.png)
,
(
![cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)) cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3))](/latexrender/pictures/8a86d13e6316a611b013a5ad9b310388.png)
)
^{11}})-tg(x-3)) cos((1/(\sqrt[35]({{x-3})^{11}})-tg(x-3))](/latexrender/pictures/c0a92cbba0a317a9bde1200df47b1044.png)
...
o argumento do cosx,e um termo muito grande q. tende ao infinito,logo o maior valor q. o cosx pode assumir e 1,entao:
L=

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Out 23, 2014 23:11
eita,mais uma correçao...
o argumento de cosx se torna infinito,devido ao radical (
![R=1/(\sqrt[35]{({x-3})^{11}} R=1/(\sqrt[35]{({x-3})^{11}}](/latexrender/pictures/56f1a221454d0dcc7891148428236cf8.png)
),logo cos(R-tg(x-3))=0...
fato esse q. se pode calcular fazendo cos(R+tg(x-3))...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Como calcular este limite?
por alienpuke » Qui Out 01, 2015 11:18
- 1 Respostas
- 1820 Exibições
- Última mensagem por nakagumahissao

Qui Out 01, 2015 23:59
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Como calcular este limite?
por alienpuke » Qua Set 30, 2015 23:32
- 1 Respostas
- 1858 Exibições
- Última mensagem por nakagumahissao

Sex Out 02, 2015 00:05
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Como calcular esse limite trigonometrico?
por IlgssonBraga » Dom Mar 02, 2014 14:59
- 2 Respostas
- 1842 Exibições
- Última mensagem por IlgssonBraga

Dom Mar 02, 2014 17:01
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4191 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- Como achar esse valor seno?
por angsrom » Qua Ago 03, 2011 09:21
- 2 Respostas
- 1858 Exibições
- Última mensagem por supertag

Qui Ago 04, 2011 01:18
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.