• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Funções Diferenciável] em um determinado ponto

[Funções Diferenciável] em um determinado ponto

Mensagempor Marcos07 » Seg Jun 30, 2014 16:45

no ponto p = (0,0)

Não estou conseguindo identificar se a função é ou não diferenciável.


Se não tiver compreendido a função, existe uma imagem em anexo abaixo.
Anexos
equação.jpg
equação.jpg (7.63 KiB) Exibido 1498 vezes
Editado pela última vez por Marcos07 em Ter Jul 01, 2014 14:03, em um total de 3 vezes.
Marcos07
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 30, 2014 01:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Funções Diferenciável] em um determinado ponto

Mensagempor Man Utd » Ter Jul 01, 2014 01:14

Olá :D


Temos que resolver o "limitão" : \lim_{ (h,k) \to (0,0) } \; \frac{f(h+x_{0},k+y_{0})-f(x_{0},y_{0})-ah-bk}{\sqrt{h^2+k^2} } onde a=\frac{\partial  f(x_{0},y_{0})}{\partial x} , e , b=\frac{\partial f(x_{0},y_{0})}{\partial y} e este "limitão" obrigatoriamente deve ser zero para a função ser diferenciavel no ponto (x_{0},y_{0}) caso não seja feita esta condição a função não é diferenciavél em (x_{0},y_{0}).


Então obtemos que :

a=\frac{\partial  f(0,0)}{\partial x}= \lim_{ x \to 0} \; \frac{f(x,0)-f(0,0)}{x-0}=\lim_{ x \to 0 } \; \frac{4x-0}{x}=4

b=\frac{\partial  f(0,0)}{\partial y}= \lim_{ y  \to 0} \; \frac{f(0,y)-f(0,0)}{y-0}=\lim_{ y \to 0 } \; \frac{-5y-0}{y}=-5



Então :


\lim_{ (h,k) \to (0,0) } \; \frac{f(h+0,k+0)-f(0,0)-ah-bk}{\sqrt{h^2+k^2} }


\lim_{ (h,k) \to (0,0) } \; \frac{\frac{2h^2 k}{\sqrt{h^2+k^2}}+4h-5k-0-4*h-(-5)*k}{\sqrt{h^2+k^2} }



\lim_{ (h,k) \to (0,0) } \; \frac{\frac{2h^2 k}{\sqrt{h^2+k^2}}+4h-5k-4h+5k}{\sqrt{h^2+k^2} }



\lim_{ (h,k) \to (0,0) } \; \frac{\frac{2h^2 k}{\sqrt{h^2+k^2}}}{\sqrt{h^2+k^2} }



\lim_{ (h,k) \to (0,0) } \; \frac{2h^2 k}{h^2+k^2 }


\lim_{ (h,k) \to (0,0) } \; 2k* \frac{h ^2}{h^2+k^2 }




Veja que 2k vai a zero quando (h,k) \to (0,0) e que \frac{h^2}{h^2+k^2 } é limitada em \left[0,1 \right], para provar isto faça :


x^2 \leq x^2+y^2

\frac{x^2}{x^2+y^2} \leq \frac{x^2+y^2}{x^2+y^2}

\frac{x^2}{x^2+y^2} \leq 1


veja tbm que \frac{x^2}{x^2+y^2} é sempre positivo , então o menor valor que pode assumir é quandox=0 que implica que\frac{x^2}{x^2+y^2}=0, daí obtemos que esta função é limitada e sua imagem é \left[0,1 \right].



Logo pelo teorema da função limitada \lim_{ (h,k) \to (0,0) } \; 2k* \frac{h ^2}{h^2+k^2 }=0 , então como o limite é zero segue que a função f(x,y) é diferenciavél no ponto (0,0).
Editado pela última vez por Man Utd em Qua Jul 02, 2014 22:23, em um total de 4 vezes.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Funções Diferenciável] em um determinado ponto

Mensagempor Marcos07 » Ter Jul 01, 2014 01:22

Muito obrigado mesmo. Muito claro e objetivo. nem sabe o quanto me ajudou. valeu mesmo!!!
Marcos07
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 30, 2014 01:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.