• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais

integrais

Mensagempor ilane » Seg Mai 05, 2014 15:18

\int   sen^2 x cos ^3 x dx
não estou conseguindo chega na resolução certa podem me ajudar por favor, cheguei em duas respostas mais não são elas:
\frac{1}{30} sen^3 (x) (3  cos  ( 2x)+7) +c


a outra é \frac{1}{3}  sen ^3 (x) -\frac{1}{5} sen ^5 (x) + c
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integrais

Mensagempor e8group » Ter Mai 06, 2014 00:35

Dicas:

i)

Ajuste a potência do cosseno de modo a ficar igual ao do seno .E como fazer isso sem alterar a igualdade ? Simples , note que

cos^3x = cos^2 x   \cdot  cos x . Assim , sin^2 x \cdot cos^3 x =  (sin^2 x \cdot  cos^2 x ) cos x .

ii)

A derivada de seno(x) é cosseno(x) , se escrevemos a expressão entre () pela correspondente que depende apenas de seno , podemos introduzir mudança de variável u = sin x e a integral se reduz a expressões polinomiais que facilmente sabemos integrar .

Consegue concluir ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: integrais

Mensagempor ilane » Ter Mai 06, 2014 10:02

santhiago escreveu:Dicas:

i)

Ajuste a potência do cosseno de modo a ficar igual ao do seno .E como fazer isso sem alterar a igualdade ? Simples , note que

cos^3x = cos^2 x   \cdot  cos x . Assim , sin^2 x \cdot cos^3 x =  (sin^2 x \cdot  cos^2 x ) cos x .

ii)

A derivada de seno(x) é cosseno(x) , se escrevemos a expressão entre () pela correspondente que depende apenas de seno , podemos introduzir mudança de variável u = sin x e a integral se reduz a expressões polinomiais que facilmente sabemos integrar .

Consegue concluir ??

vou tentar concluir
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.