• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais

integrais

Mensagempor ilane » Seg Mai 05, 2014 15:18

\int   sen^2 x cos ^3 x dx
não estou conseguindo chega na resolução certa podem me ajudar por favor, cheguei em duas respostas mais não são elas:
\frac{1}{30} sen^3 (x) (3  cos  ( 2x)+7) +c


a outra é \frac{1}{3}  sen ^3 (x) -\frac{1}{5} sen ^5 (x) + c
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integrais

Mensagempor e8group » Ter Mai 06, 2014 00:35

Dicas:

i)

Ajuste a potência do cosseno de modo a ficar igual ao do seno .E como fazer isso sem alterar a igualdade ? Simples , note que

cos^3x = cos^2 x   \cdot  cos x . Assim , sin^2 x \cdot cos^3 x =  (sin^2 x \cdot  cos^2 x ) cos x .

ii)

A derivada de seno(x) é cosseno(x) , se escrevemos a expressão entre () pela correspondente que depende apenas de seno , podemos introduzir mudança de variável u = sin x e a integral se reduz a expressões polinomiais que facilmente sabemos integrar .

Consegue concluir ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: integrais

Mensagempor ilane » Ter Mai 06, 2014 10:02

santhiago escreveu:Dicas:

i)

Ajuste a potência do cosseno de modo a ficar igual ao do seno .E como fazer isso sem alterar a igualdade ? Simples , note que

cos^3x = cos^2 x   \cdot  cos x . Assim , sin^2 x \cdot cos^3 x =  (sin^2 x \cdot  cos^2 x ) cos x .

ii)

A derivada de seno(x) é cosseno(x) , se escrevemos a expressão entre () pela correspondente que depende apenas de seno , podemos introduzir mudança de variável u = sin x e a integral se reduz a expressões polinomiais que facilmente sabemos integrar .

Consegue concluir ??

vou tentar concluir
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}