• Anúncio Global
    Respostas
    Exibições
    Última mensagem

crescimento e decrescimento

crescimento e decrescimento

Mensagempor joandro » Dom Abr 13, 2014 11:30

encontra crescimento e decrescimento e a concavidade da função x^4-4x^3+10
joandro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 13, 2014 11:22
Formação Escolar: GRADUAÇÃO
Área/Curso: exatas
Andamento: cursando

Re: crescimento e decrescimento

Mensagempor alienante » Ter Abr 29, 2014 17:27

x=3f(x)=x^4-4x^3+10\rightarrow \frac{d}{dx}[f(x)]=4x^3-12x^2\rightarrow \frac{d^2}{dx^2}[f(x)]=12x^2-24x . Achando os pontos críticos com a derivada primeira temos que:\frac{d}{dx}[f(x)]=4x^3-12x^2=0\rightarrow 4x^2(x-3)=0 oque significa que {x}_{1}=0 e {x}_{2}=3 . Se pegarmos qualquer ponto no intervalo (-\infty,0) perceberemos que \frac{d}{dx}[f(x)]<0, portanto nesse intervalo a função é decrescente, no intervalo (0,3) veremos que \frac{d}{dx}[f(x)]<0, logo nesse intervalo também será decrescente, e no intervalo (3,+\infty) percebemos que \frac{d}{dx}[f(x)]>0, logo a função será crescente nesse intervalo.Quanto a concavidade termos de achar os pontos de inflexão com a derivada segunda:\frac{d^2}{dx^2}[f(x)]=12x^2-24x=0\rightarrow 12x(x-2)=0 logo {x}_{1}=0 e {x}_{2}=2. Se analasarmos o intervalo (-\infty,0) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo a função será concava para cima nesse intervalo.No intervalo(0,2) veremos que \frac{d^2}{dx^2}[f(x)]<0 logo a função será concava para baixo nesse intervalo, e no intervalo(2,+\infty) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo veremos que a função será concava para cima nesse intervalo.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: