• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calcular limites] Exercício

[calcular limites] Exercício

Mensagempor fff » Qua Jan 15, 2014 12:51

Boa tarde. Tenho dúvidas neste exercício na alínea b. A solução da alínea b é \lim{h({u}_{n}})=-2 e \lim{h({v}_{n}})=+\infty
Imagem
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [calcular limites] Exercício

Mensagempor Guilherme Pimentel » Sex Jan 17, 2014 05:45

Definindo:
h(x)= \left\{
\begin{array}{cc}
 \left| \frac{1}{x^2-1}\right|-2 & \textrm{, se }\left| x\right|\neq 1 \\
  -1 & \textrm{, se }\left| x\right| =1 \\
\end{array} \right. \\ 

\textrm{teremos assim:}

\[
\begin{align}
   \lim_{x\rightarrow\pm\infty}h(x) &= -2 \\ 
   \lim_{x\rightarrow\pm 1}h(x) &= +\infty \\
   h(1)=h(0)&=h(-1)=-1
\end{align}\]\\

\textrm{agora observe que:}

\begin{align}
   \lim_{n\rightarrow+\infty}u_n=+\infty &\Rightarrow \lim_{n\rightarrow+\infty}h(u_n)=-2 \\ 
   \lim_{n\rightarrow+\infty}v_{2n}&=1 \\ 
   \lim_{n\rightarrow+\infty}v_{2n+1}&=-1 \\
   \textrm{(2) e (3)}&\Rightarrow\lim_{n\rightarrow+\infty}h(v_n)=+\infty
\end{align}


o gráfico fica:
função par01.jpg
Gráfico de h(x)
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [calcular limites] Exercício

Mensagempor fff » Dom Jan 19, 2014 09:00

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.