por silviopuc » Seg Dez 23, 2013 20:09
Pessoal estou com dúvida no seguinte exercício:
Da folha circular corta-se setor circular de modo que se obtenha o funil conforme mostra a figura abaixo. Se o funil tem volume máximo, então o ângulo central

, em radianos, é igual a:

- figura
- fig1.jpg (9.44 KiB) Exibido 1462 vezes
A resposta é:
![2\pi\sqrt[]{\frac{2}{3}} 2\pi\sqrt[]{\frac{2}{3}}](/latexrender/pictures/9b41d8f6c1b1866e9c8345bf4b7f48d3.png)
Eu cheguei na seguinte expressão para o volume do cone:
![V=\frac{\pi{R}^{3}}{3}\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}\sqrt[]{1-\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}} V=\frac{\pi{R}^{3}}{3}\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}\sqrt[]{1-\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}}](/latexrender/pictures/746004ab1a52f6bbb05bf3e135c6e87b.png)
Chamei

, e reescrevi assim:
![y=\frac{\pi{R}^{3}}{3}{y}^{2}\sqrt[]{1-{y}^{2}} y=\frac{\pi{R}^{3}}{3}{y}^{2}\sqrt[]{1-{y}^{2}}](/latexrender/pictures/7c84505e51fa66e1cc41345f7f53460c.png)
, com

Derivando obtive o ponto de máximo
![y=\sqrt[]{\frac{2}{3}} y=\sqrt[]{\frac{2}{3}}](/latexrender/pictures/e215c3380230385cd0a4ec5d34f1aedf.png)
Pois bem, já fiz um monte de cálculos e não chego no gabarito. Para chegar na fórmula do volume eu fiz assim:

e o H eu tirei por Pitágoras.
Não sei se fiz certo, pois considerei o meu cone obtido a partir da parte branca (já que subtraio

) se é aqui que está meu erro, como consertá-lo e encontrar a resposta do gabarito?
-
silviopuc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Jan 15, 2013 12:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Seg Dez 23, 2013 21:37
é exatamente ai que esta o seu erro
a parte que voce tem que considerar como o cone é a cinza
a forma de corrigir é simples


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por silviopuc » Seg Dez 23, 2013 22:33
Obrigado!
Devo ter esgotado os neurônios para chegar onde cheguei e fiquei sem eles para concluir. Fiz a alteração sugerida e deu certo.
-
silviopuc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Jan 15, 2013 12:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Dúvida] Integral e ponto máximo de uma função
por ruisu » Seg Mar 04, 2013 15:19
- 1 Respostas
- 1577 Exibições
- Última mensagem por young_jedi

Seg Mar 04, 2013 23:14
Cálculo: Limites, Derivadas e Integrais
-
- Duvida com problema...
por mhsr » Sex Jan 15, 2010 18:39
- 2 Respostas
- 1743 Exibições
- Última mensagem por Molina

Sáb Jan 16, 2010 09:04
Estatística
-
- Dúvida problema
por RJ1572 » Sex Mai 21, 2010 11:21
- 2 Respostas
- 3382 Exibições
- Última mensagem por MarceloFantini

Sex Mai 21, 2010 22:12
Progressões
-
- Duvida Problema
por RJ1572 » Seg Mai 24, 2010 11:26
- 0 Respostas
- 747 Exibições
- Última mensagem por RJ1572

Seg Mai 24, 2010 11:26
Progressões
-
- Dúvida Problema.
por RJ1572 » Seg Jun 07, 2010 13:28
- 1 Respostas
- 1056 Exibições
- Última mensagem por Douglasm

Seg Jun 07, 2010 15:23
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.