por Victor Mello » Seg Nov 11, 2013 23:13
Galera, eu estava tentando integrar
![\int\frac{dx}{\sqrt[]{4x^2-49}} \int\frac{dx}{\sqrt[]{4x^2-49}}](/latexrender/pictures/1f9875a9e61005037a2fe8488411f41c.png)
e tudo estava dando certo. Usei

e

(para servir de referência para o final da resolução). Derivei o

e substitui o dx. Aí ficou assim:
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}}](/latexrender/pictures/4f47eb7517597fb8197fb55b235ba4e7.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}}](/latexrender/pictures/e11a29cae8993074cfbd2c09a5c0da1e.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/0f0f810ba683aaf5a2369f88ba63f5c0.png)
![\int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}} \int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/24da9fbfa98825d2370b131d634fca1a.png)
= OBS: eu tinha cancelado o 7 como termo unitário por causa da raíz quadrada de 49
A partir daqui virou outro problema: eu preciso agora de uma outra substituição e chamei o

e derivei ela para subistituir o

e assim ficou:
![\int\frac{du}{\sqrt[]{4u^2-1}} \int\frac{du}{\sqrt[]{4u^2-1}}](/latexrender/pictures/21215219f3fede5e9e21942fa558da2d.png)
e fatorei o

![\int\frac{du}{\sqrt[]{(2u-1)(2u+1)}} \int\frac{du}{\sqrt[]{(2u-1)(2u+1)}}](/latexrender/pictures/defaf216981e526e421322de3576177e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}}](/latexrender/pictures/94dca3edf4618ea3a9b9d38a105cef4e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}}](/latexrender/pictures/897aac462c950b050329dd31221653ea.png)
=
E parei aqui. Não tem como mais integrar pela substituição simples e muito menos por partes por causa da raíz do denominador na integral antes de eu fazer por substituição simples. Alguém poderia sugerir qual a substituição mais adequada depois da trigonométrica? Por muito pouco eu não consegui integrar
Bom, espero que vocês tenham compreendido o meu raciocínio e se puderem me ajudar, eu agradeço
Obrigado.
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por e8group » Ter Nov 12, 2013 20:55
Atenção com a identidade

o que implica

. Agora note

. Faça uma comparação deste resultado com a outra relação .Qual substituição deve tomar de modo escrever

como

?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 22:43
Já tinha percebido isso antes de você comentar rsrsrsrsrs, sempre esqueço de um detalhe que faz toda a diferença, não sei como. Agora não posso mais esquecer.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 23:32
Já consegui aqui agora. Obrigado pelo detalhe.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por substituição trigonométrica.
por ClaudioSP » Qui Out 08, 2009 12:25
- 1 Respostas
- 3634 Exibições
- Última mensagem por ClaudioSP

Qui Out 08, 2009 14:25
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao trigonometrica 3
por beel » Dom Nov 27, 2011 18:24
- 3 Respostas
- 2696 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:44
Cálculo: Limites, Derivadas e Integrais
-
- integral- substituiçao trigonometrica 4
por beel » Dom Nov 27, 2011 18:29
- 1 Respostas
- 1933 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:26
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição trigonométrica
por Crist » Seg Nov 12, 2012 20:46
- 1 Respostas
- 1389 Exibições
- Última mensagem por e8group

Qui Nov 15, 2012 15:38
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição Trigonométrica
por klueger » Qua Mar 06, 2013 23:03
- 4 Respostas
- 3457 Exibições
- Última mensagem por Russman

Qui Mar 07, 2013 01:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.