• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Tripla!

Integral Tripla!

Mensagempor samysoares » Sáb Nov 09, 2013 00:23

Mostre que



Tentei de todas as formas, mudança cilindrica, esférica e nada!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral Tripla!

Mensagempor Man Utd » Sex Nov 15, 2013 15:09

pergunta: a função do integrando não seria: \sqrt{x^2+y^2+z^2} ?

vamos tentar por coordenadas esféricas:

temos que o cone em coordenadas esféricas é \phi=45 \rightarrow \phi=\frac{\pi}{4} graus.

e o paraboloide é \rho=\frac{cos \phi}{sen^{2} \phi}

a variação de \theta é : 0<=\theta<=2\pi , já que é a volta completa.

a variação de \phi é: \frac{\pi}{4}<= \phi <= \frac{\pi}{2} , se esboçar a figura verá que a varredura do raio começa no cone \phi=\frac{\pi}{4} e termina no paraboloide quando \phi=\frac{\pi}{2}

a variação do raio é 0<=\rho<=\frac{cos \phi}{sen^{2} \phi}

então a nossa integral montada é :

\int_{0}^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{cos \phi}{sen^{2} \phi}} \rho^{4}*sen\phi d\rho d\phi d\theta

tente concluir,se tiver dúvida é só falar. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.