• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limites notáveis resolução de questão

[Limite] Limites notáveis resolução de questão

Mensagempor Nicolas1Lane » Qui Set 26, 2013 07:56

Dada a seguinte proposição $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$ queria saber se minha resolução apresentada abaixo matematicamente descrita é aceitável ou ainda se poderia ser melhorada ou mesmo no caso da existência, me digam dicas para melhorar ainda mais neste aprendizado...
Estou sendo meio redundante, mas isso se deve a enfatização de minha professora de querer que todas as propriedades e etapas de resoluções usadas nos cálculos sejam explicitadas até que se chegue ao produto final.

Assim: $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$

=$\lim_{x\rightarrow\ 0} \frac{seax}{ \frac{cosax}{x}}$

=$\lim_{x\rightarrow\ 0} \frac{1 . ax}{cosax . ax} . \lim_{x\rightarrow\ 0} \frac{\frac{sem ax . ax}{ax}}{{x}}$

=$1 . a \lim_{x\rightarrow\ 0} \frac{senx}{x}$

=$a . 1$
=$ a $
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Limite] Limites notáveis resolução de questão

Mensagempor young_jedi » Qui Set 26, 2013 14:08

podemos escrever da seguinte forma

\lim_{x\to0}\frac{tg(ax)}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{1}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{a}{ax}

\lim_{x\to0}\frac{sen(ax)}{ax}.\frac{a}{cos(ax)}

\lim_{x\to0}\frac{sen(ax)}{ax}.\lim_{x\to0}\frac{a}{cos(ax)}=1.a
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.