• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - como resolver um lim quando temos raiz^2 e raiz^3.

Limite - como resolver um lim quando temos raiz^2 e raiz^3.

Mensagempor Monica santos » Sex Ago 16, 2013 14:22

[tex]\lim_{0}\sqrt[]{a^2+bt-a} (a>0)
t

Vamos lá o professor mandou calcular o limite, porém eu não entendir pelos exemplos que ele me passou e queria algo mais detalhado. Tem outros exemplos que necessito utilizar produtos notaveis, fatoração e mmc . Me ajude por favor .
Me explica isso melhor.
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor young_jedi » Sex Ago 16, 2013 16:15

Não compreendi muito bem este limite seria assim

\lim_{a\to0}\sqrt[]{a^2+bt-a}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor Monica santos » Sex Ago 16, 2013 16:31

È caso de limite inderteminada .
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor Monica santos » Sex Ago 16, 2013 16:33

correto esse sim, porem é sobre (T) pois não foi junto com a equação
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor young_jedi » Sex Ago 16, 2013 19:01

imagino então que seja isto

\lim_{t\to0}\frac{\sqrt{a^2+bt-a}}{t}

se o a for maior que 1 então temos que

a^2-a>0

portanto quando t tende a 0 ficamos com uma raiz de

\sqrt{a^2-a}>0

mais isto esta sobre t portanto quando t tende a zero isto tende a infinito

\lim_{t\to0}\frac{\sqrt{a^2+bt-a}}{t}=+\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.