por dani741 » Qua Jul 03, 2013 19:53
1. O ponto p(1,0) está sobre a curva

Estime a inclinação da reta tangente em P.
gostaria de ajuda em como resolver essa questão!
obrigada
-
dani741
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jul 03, 2013 19:19
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qua Jul 03, 2013 21:56
Boa noite .A equação da reta tangente a curva

no ponto

é dada por
E sua inclinação é

.
Considerando

, pela regra da cadeia

.Assim ,

é a inclinação da reta tangente a curva dada .Basta fazer as contas com

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas inclinacao da reta tangente
por Gabrielmelocampos20 » Qui Nov 12, 2015 20:46
- 1 Respostas
- 2355 Exibições
- Última mensagem por Cleyson007

Sex Nov 13, 2015 08:35
Cálculo: Limites, Derivadas e Integrais
-
- Estimar o valor da inclinação da reta tangente
por samra » Sáb Abr 14, 2012 16:36
- 0 Respostas
- 834 Exibições
- Última mensagem por samra

Sáb Abr 14, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]- Inclinação da tangente
por Ana_Rodrigues » Qui Fev 23, 2012 15:51
- 4 Respostas
- 3138 Exibições
- Última mensagem por Ana_Rodrigues

Qui Fev 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8534 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Reta Paralela à Reta Tangente]
por raimundoocjr » Qui Mai 30, 2013 18:44
- 0 Respostas
- 1092 Exibições
- Última mensagem por raimundoocjr

Qui Mai 30, 2013 18:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.